IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v28y2009i5p371-386.html
   My bibliography  Save this article

Forecasting using high-frequency data: a comparison of asymmetric financial duration models

Author

Listed:
  • Qi Zhang

    (Leeds University Business School, UK)

  • Charlie X Cai

    (Leeds University Business School, UK)

  • Kevin Keasey

    (Leeds University Business School, UK)

Abstract

The first purpose of this paper is to assess the short-run forecasting capabilities of two competing financial duration models. The forecast performance of the Autoregressive Conditional Multinomial-Autoregressive Conditional Duration (ACM-ACD) model is better than the Asymmetric Autoregressive Conditional Duration (AACD) model. However, the ACM-ACD model is more complex in terms of the computational setting and is more sensitive to starting values. The second purpose is to examine the effects of market microstructure on the forecasting performance of the two models. The results indicate that the forecast performance of the models generally decreases as the liquidity of the stock increases, with the exception of the most liquid stocks. Furthermore, a simple filter of the raw data improves the performance of both models. Finally, the results suggest that both models capture the characteristics of the micro data very well with a minimum sample length of 20 days. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • Qi Zhang & Charlie X Cai & Kevin Keasey, 2009. "Forecasting using high-frequency data: a comparison of asymmetric financial duration models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 371-386.
  • Handle: RePEc:jof:jforec:v:28:y:2009:i:5:p:371-386
    DOI: 10.1002/for.1100
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1100
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.1100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    2. Gallo Giampiero M. & Pacini Barbara, 1998. "Early News is Good News: The Effects of Market Opening on Market Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
    3. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    4. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    5. Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2004. "On Markov error-correction models, with an application to stock prices and dividends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 69-88.
    6. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
    7. Luc Bauwens & Pierre Giot, 2003. "Asymmetric ACD models: Introducing price information in ACD models," Empirical Economics, Springer, vol. 28(4), pages 709-731, November.
    8. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
    9. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    10. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    11. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    12. Huang, Roger D & Stoll, Hans R, 1994. "Market Microstructure and Stock Return Predictions," The Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 179-213.
    13. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    14. Robert I. Webb & David G. Smith, 1994. "The effect of market opening and closing on the volatility of eurodollar futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(1), pages 51-78, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charlie X. Cai & Qi Zhang, 2016. "High†Frequency Exchange Rate Forecasting," European Financial Management, European Financial Management Association, vol. 22(1), pages 120-141, January.
    2. Erhard Reschenhofer & Manveer Kaur Mangat & Christian Zwatz & Sándor Guzmics, 2020. "Evaluation of current research on stock return predictability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 334-351, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    2. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    3. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    4. Nowak, Sylwia & Anderson, Heather M., 2014. "How does public information affect the frequency of trading in airline stocks?," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 26-38.
    5. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    7. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    8. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    9. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    10. Christian M. Hafner, 2012. "Cross-correlating wavelet coefficients with applications to high-frequency financial time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1363-1379, December.
    11. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    12. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    13. Lee, Sangyeol & Oh, Haejune, 2015. "Entropy test and residual empirical process for autoregressive conditional duration models," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 1-12.
    14. Katarzyna Bien-Barkowska, 2011. "Distribution Choice for the Asymmetric ACD Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 55-72.
    15. Wong, Woon K. & Tan, Dijun & Tian, Yixiang, 2009. "Informed trading and liquidity in the Shanghai Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 66-73, March.
    16. Charlie X. Cai & Qi Zhang, 2016. "High†Frequency Exchange Rate Forecasting," European Financial Management, European Financial Management Association, vol. 22(1), pages 120-141, January.
    17. Bhatti, Chad R., 2009. "Intraday trade and quote dynamics: A Cox regression analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2240-2249.
    18. Pooi AH-HIN & Ng KOK-HAUR & Soo HUEI-CHING, 2016. "Modelling and Forecasting with Financial Duration Data Using Non-linear Model," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(2), pages 79-92.
    19. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, Center for Economic and Financial Research (CEFIR).
    20. Yiing Fei Tan & Kok Haur Ng & You Beng Koh & Shelton Peiris, 2022. "Modelling Trade Durations Using Dynamic Logarithmic Component ACD Model with Extended Generalised Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(10), pages 1-20, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:28:y:2009:i:5:p:371-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.