IDEAS home Printed from https://ideas.repec.org/a/jis/ejistu/y2022i01id479.html
   My bibliography  Save this article

The Use of GARCH Autoregressive Models in Estimating and Forecasting the Crude Oil Volatility

Author

Listed:
  • NICOLAE Simona
  • GRIGORE George-Eduard
  • MUȘETESCU Radu-Cristian

Abstract

Today, oil is one of the most popular commodities traded globally, due to its indispensable character and multiple properties offered to mankind. Increased attention is paid to the analysis of volatile and fluctuating trends in the overall price of this valuable energy source. Using the autoregressive conditional heteroskedasticity models such as GARCH(1,1), GARCH-M(1,1) and EGARCH(1,1), the present study has as a priority objective in estimating and predicting the volatility of the oil returns series (Brent Crude Oil return series) in the 1987-2022. The main results highlighted the preference in using the asymmetric model EGARCH (1,1) on the measurement of conditional variance, showing that Brent Crude Oil reacts over 90% to any existing market’s shock (i.e.: information, events, facts, news, etc.) in a negative manner/way. At the same time, various tests and evaluation conditions were used (ARCH-LM Test, Durbin-Waston Test, High Log likelihood, Lowest Schwarz Information Criteria) in investigating the level of performance in estimation the conditional crude oil volatility. Each GARCH (1,1) model is meeting brilliantly these conditions and acquiring the character of stability and validity in use. At the same time, performing forecast analysis on crude oil volatility in two different time periods: 1987-2022, respectively 2020-2022, it was shown that existence of the phenomenon of clustering-volatility over the time, with strong implications for the functioning mechanism of international financial markets. Fulfilling those restrictive conditions, the symmetric and parametric model GARCH-M (1,1) becomes, in our case, the most efficient model in forecasting the volatility of Brent Crude Oil return series in the analysed period.

Suggested Citation

  • NICOLAE Simona & GRIGORE George-Eduard & MUȘETESCU Radu-Cristian, 2022. "The Use of GARCH Autoregressive Models in Estimating and Forecasting the Crude Oil Volatility," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 01, March.
  • Handle: RePEc:jis:ejistu:y:2022:i:01:id:479
    as

    Download full text from publisher

    File URL: https://ejist.ro/files/pdf/479.pdf
    Download Restriction: no

    File URL: https://ejist.ro/abstract/479/The-Use-of-GARCH-Autoregressive-Models-in-Estimating-and-Forecasting-the.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    2. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    3. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    4. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    5. Yue‐Jun Zhang & Shu‐Jiao Ma, 2021. "Exploring the dynamic price discovery, risk transfer and spillover among INE, WTI and Brent crude oil futures markets: Evidence from the high‐frequency data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2414-2435, April.
    6. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    7. Dondukova Oyuna & Liu Yaobin, 2021. "Forecasting the Crude Oil Prices Volatility With Stochastic Volatility Models," SAGE Open, , vol. 11(3), pages 21582440211, July.
    8. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    9. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    10. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    11. Yue-Jun Zhang & Ting Yao & Ling-Yun He, 2015. "Forecasting crude oil market volatility: can the Regime Switching GARCH model beat the single-regime GARCH models?," Papers 1512.01676, arXiv.org.
    12. Zhang, Yue-Jun & Wang, Jing, 2015. "Exploring the WTI crude oil price bubble process using the Markov regime switching model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 377-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jassim Aladwani, 2024. "Oil Volatility Uncertainty: Impact on Fundamental Macroeconomics and the Stock Index," Economies, MDPI, vol. 12(6), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Yue-Jun Zhang & Ting Yao & Ling-Yun He, 2015. "Forecasting crude oil market volatility: can the Regime Switching GARCH model beat the single-regime GARCH models?," Papers 1512.01676, arXiv.org.
    4. Pablo Cansado-Bravo & Carlos Rodríguez-Monroy, 2018. "Persistence of Oil Prices in Gas Import Prices and the Resilience of the Oil-Indexation Mechanism. The Case of Spanish Gas Import Prices," Energies, MDPI, vol. 11(12), pages 1-17, December.
    5. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    6. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    7. Umar, Muhammad & Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Lobonţ, Oana-Ramona, 2021. "Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices," Energy, Elsevier, vol. 231(C).
    8. F. Gonzalez Miranda & N. Burgess, 1997. "Modelling market volatilities: the neural network perspective," The European Journal of Finance, Taylor & Francis Journals, vol. 3(2), pages 137-157.
    9. Arie Preminger & Uri Ben-zion & David Wettstein, 2007. "The extended switching regression model: allowing for multiple latent state variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 457-473.
    10. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    11. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    12. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
    13. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    14. Kieran Burgess & Nicholas Rohde, 2013. "Can Exchange Rates Forecast Commodity Prices? Recent Evidence using Australian Data," Economics Bulletin, AccessEcon, vol. 33(1), pages 511-518.
    15. Sabri Boubaker & Zhenya Liu & Yaosong Zhan, 2022. "Risk management for crude oil futures: an optimal stopping-timing approach," Annals of Operations Research, Springer, vol. 313(1), pages 9-27, June.
    16. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    17. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    18. Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    19. repec:lan:wpaper:470 is not listed on IDEAS
    20. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    21. Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.

    More about this item

    Keywords

    conditional variance; GARCH models; crude oil returns; clustering-volatility; COVID-19 Pandemic;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C59 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Other
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jis:ejistu:y:2022:i:01:id:479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alina Popescu (email available below). General contact details of provider: https://edirc.repec.org/data/frasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.