IDEAS home Printed from https://ideas.repec.org/a/jfr/ijfr11/v9y2018i1p90-98.html
   My bibliography  Save this article

How Early Can Non-Performance Loan Predict Bank Failure? Evidence from US Bank Failure during 2008-2010

Author

Listed:
  • Abdus Samad

Abstract

Probit model was applied on the non-performance loans (NPL) of eight quarters, quarter 1¡ª quarter 8, in determining the significant quarter before the bank was declared failure. The result of the Probit estimates found that as early as one-year ahead (4th quarter-ahead) bank-failure can be alerted and predicted. The NPL of the 4th quarter was a significant predictor of bank failure. The estimates of the model correctly predicts 89.6 percent of the U.S. banks that failed and 97.6 percent of the banks that survived during 2008-2010. Overall, the estimated model correctly predicts 95.5 percent of the observations (89.6 percent of the failure =0 and 97.6 percent of the survival=1 observations). The paper provides policy prescription that bank managements and bank regulators should pay attention to the early quarter(s) that are significant factor (s) for bank failure.

Suggested Citation

  • Abdus Samad, 2018. "How Early Can Non-Performance Loan Predict Bank Failure? Evidence from US Bank Failure during 2008-2010," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 9(1), pages 90-98, January.
  • Handle: RePEc:jfr:ijfr11:v:9:y:2018:i:1:p:90-98
    DOI: 10.5430/ijfr.v9n1p90
    as

    Download full text from publisher

    File URL: http://www.sciedu.ca/journal/index.php/ijfr/article/view/12672/7827
    Download Restriction: no

    File URL: http://www.sciedu.ca/journal/index.php/ijfr/article/view/12672
    Download Restriction: no

    File URL: https://libkey.io/10.5430/ijfr.v9n1p90?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard S. Barr & Thomas F. Siems, 1994. "Predicting bank failure using DEA to quantify management quality," Financial Industry Studies Working Paper 94-1, Federal Reserve Bank of Dallas.
    2. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    3. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    4. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    5. Taha Zaghdoudi, 2013. "Bank Failure Prediction with Logistic Regression," International Journal of Economics and Financial Issues, Econjournals, vol. 3(2), pages 537-543.
    6. Molina, Carlos A., 2002. "Predicting bank failures using a hazard model: the Venezuelan banking crisis," Emerging Markets Review, Elsevier, vol. 3(1), pages 31-50, March.
    7. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Forecast bankruptcy using a blend of clustering and MARS model: case of US banks," Annals of Operations Research, Springer, vol. 281(1), pages 27-64, October.
    2. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    3. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.
    4. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    5. Saiful Anwar & A.M Hasan Ali, 2018. "ANNs-BASED EARLY WARNING SYSTEM FOR INDONESIAN ISLAMIC BANKS," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 20(3), pages 325-342, January.
    6. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    7. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    8. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    9. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    10. M. A. Lagesh & Maram Srikanth & Debashis Acharya, 2018. "Corporate Performance during Business Cycles: Evidence from Indian Manufacturing Firms," Global Business Review, International Management Institute, vol. 19(5), pages 1261-1274, October.
    11. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    12. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
    14. Sun, Xiaojun & Lei, Yalin, 2021. "Research on financial early warning of mining listed companies based on BP neural network model," Resources Policy, Elsevier, vol. 73(C).
    15. Yue Qiu & Jiabei He & Zhensong Chen & Yinhong Yao & Yi Qu, 2024. "A novel semisupervised learning method with textual information for financial distress prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2478-2494, November.
    16. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    17. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    18. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    19. Douglas, Ella & Lont, David & Scott, Tom, 2014. "Finance company failure in New Zealand during 2006–2009: Predictable failures?," Journal of Contemporary Accounting and Economics, Elsevier, vol. 10(3), pages 277-295.
    20. C. Quek & R. W. Zhou & C. H. Lee, 2009. "A novel fuzzy neural approach to data reconstruction and failure prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 165-187, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jfr:ijfr11:v:9:y:2018:i:1:p:90-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gina Perry (email available below). General contact details of provider: http://ijfr.sciedupress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.