IDEAS home Printed from https://ideas.repec.org/a/jfr/afr111/v3y2014i4p91.html
   My bibliography  Save this article

Comparison of Bankruptcy Prediction Models: Evidence from India

Author

Listed:
  • Varadraj Bapat
  • Abhay Nagale

Abstract

The purpose of this paper is to develop and compare the performance of bankruptcy prediction models using multiple discriminant analysis, logistic regression and neural network for listed companies in India. Accordingly bankruptcy prediction models are developed, over the three years prior to bankruptcy using financial ratios. The sample consists of 72 bankrupt and 72 non-bankrupt companies over the period 1991-2013. The results indicate that compared to multiple discriminant analysis and logistic regression, neural network has the highest classification accuracy for all the three years prior to bankruptcy. This study will be useful to financial institutions, investors, creditors and auditors to identify companies that are likely to experience bankruptcy.

Suggested Citation

  • Varadraj Bapat & Abhay Nagale, 2014. "Comparison of Bankruptcy Prediction Models: Evidence from India," Accounting and Finance Research, Sciedu Press, vol. 3(4), pages 1-91, August.
  • Handle: RePEc:jfr:afr111:v:3:y:2014:i:4:p:91
    as

    Download full text from publisher

    File URL: https://www.sciedupress.com/journal/index.php/afr/article/download/5743/3400
    Download Restriction: no

    File URL: https://www.sciedupress.com/journal/index.php/afr/article/view/5743
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    2. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    3. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    4. Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
    5. Neophytou, E. & Charitou, A. & Charalambous, C., 2001. "Predicting Corporate Failure: Empirical Evidence for the UK," Papers 01-173, University of Southampton - Department of Accounting and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunaina Kanojia & Shasta Gupta, 2023. "Bankruptcy in Indian context: perspectives from corporate governance," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 505-545, June.
    2. Javed Iqbal & Furrukh Bashir & Rashid Ahmad & Hina Arshad, 2022. "Predicting Bankruptcy through Neural Network:Case of PSX Listed Companies," iRASD Journal of Management, International Research Alliance for Sustainable Development (iRASD), vol. 4(2), pages 299-315, june.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    2. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    3. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    4. Mitroussi, K. & Abouarghoub, W. & Haider, J.J. & Pettit, S.J. & Tigka, N., 2016. "Performance drivers of shipping loans: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 171(P3), pages 438-452.
    5. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    6. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    7. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
    8. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    9. Elisa Ughetto & Andrea Vezzulli, 2011. "What role can mutual guarantee consortia play for financing innovation? A firm-level study for Italy," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 3(4), pages 294-319.
    10. Eleftherios Giovanis, 2012. "Study of Discrete Choice Models and Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA," Economic Analysis and Policy, Elsevier, vol. 42(1), pages 79-96, March.
    11. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    12. Situm Mario, 2014. "Inability of Gearing-Ratio as Predictor for Early Warning Systems," Business Systems Research, Sciendo, vol. 5(2), pages 23-45, September.
    13. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.
    14. Jairaj Gupta & Nicholas Wilson & Andros Gregoriou & Jerome Healy, 2014. "The value of operating cash flow in modelling credit risk for SMEs," Applied Financial Economics, Taylor & Francis Journals, vol. 24(9), pages 649-660, May.
    15. Wu, Desheng(Dash) & Liang, Liang & Yang, Zijiang, 2008. "Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 206-220, September.
    16. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    17. Su-Han Woo & Min-Su Kwon & Kum Fai Yuen, 2021. "Financial determinants of credit risk in the logistics and shipping industries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 268-290, June.
    18. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    19. Maurice Peat & Stewart Jones, 2012. "Using Neural Nets To Combine Information Sets In Corporate Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 90-101, April.
    20. Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jfr:afr111:v:3:y:2014:i:4:p:91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sciedu Press (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.