IDEAS home Printed from https://ideas.repec.org/a/jfr/afr111/v10y2021i4p34.html
   My bibliography  Save this article

Asset Allocation via Machine Learning

Author

Listed:
  • Zhenning Hong
  • Ruyan Tian
  • Qing Yang
  • Weiliang Yao
  • Tingting Ye
  • Liangliang Zhang

Abstract

In this paper, we document a novel machine learning-based numerical framework to solve static and dynamic portfolio optimization problems, with, potentially, an extremely large number of assets. The framework proposed applies to general constrained optimization problems and overcomes many major difficulties arising in current literature. We not only empirically test our methods in U.S. and China A-share equity markets, but also run a horse-race comparison of some optimization schemes documented in (Homescu, 2014). We record significant excess returns, relative to the selected benchmarks, in both U.S. and China equity markets using popular schemes solved by our framework, where the conditional expected returns are obtained via machine learning regression, inspired by (Gu, Kelly & Xiu, 2020) and (Leippold, Wang & Zhou, 2021), of future returns on pricing factors carefully chosen.

Suggested Citation

  • Zhenning Hong & Ruyan Tian & Qing Yang & Weiliang Yao & Tingting Ye & Liangliang Zhang, 2021. "Asset Allocation via Machine Learning," Accounting and Finance Research, Sciedu Press, vol. 10(4), pages 1-34, November.
  • Handle: RePEc:jfr:afr111:v:10:y:2021:i:4:p:34
    as

    Download full text from publisher

    File URL: https://www.sciedupress.com/journal/index.php/afr/article/download/21196/13072
    Download Restriction: no

    File URL: https://www.sciedupress.com/journal/index.php/afr/article/view/21196
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    3. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    4. T. Roncalli & G. Weisang, 2016. "Risk parity portfolios with risk factors," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 377-388, March.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. Giannone, Domenico & De Mol, Christine & Daubechies, Ingrid & Brodie, Joshua, 2007. "Sparse and Stable Markowitz Portfolios," CEPR Discussion Papers 6474, C.E.P.R. Discussion Papers.
    8. Sarah Perrin & Thierry Roncalli, 2019. "Machine Learning Optimization Algorithms & Portfolio Allocation," Papers 1909.10233, arXiv.org.
    9. Schroder, Mark & Skiadas, Costis, 1999. "Optimal Consumption and Portfolio Selection with Stochastic Differential Utility," Journal of Economic Theory, Elsevier, vol. 89(1), pages 68-126, November.
    10. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    11. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    12. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    13. Anderson, Robert M. & Bianchi, Stephen W. & Goldberg, Lisa R., 2012. "Will My Risk Parity Strategy Outperform?," Department of Economics, Working Paper Series qt23t2s950, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    2. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    3. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    4. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    5. Prabhu Prasad Panda & Maysam Khodayari Gharanchaei & Xilin Chen & Haoshu Lyu, 2024. "Application of Deep Learning for Factor Timing in Asset Management," Papers 2404.18017, arXiv.org.
    6. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    7. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    8. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    9. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    10. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    11. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    12. Kyoung Jin Choi & Hyeng Keun Koo & Do Young Kwak, 2004. "Optimal Stopping of Active Portfolio Management," Annals of Economics and Finance, Society for AEF, vol. 5(1), pages 93-126, May.
    13. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    14. Max Gillman & Michal Kejak & Michal Pakoš, 2015. "Learning about Rare Disasters: Implications For Consumption and Asset Prices," Review of Finance, European Finance Association, vol. 19(3), pages 1053-1104.
    15. Gonçalo Faria & João Correia-da-Silva, 2016. "Is stochastic volatility relevant for dynamic portfolio choice under ambiguity?," The European Journal of Finance, Taylor & Francis Journals, vol. 22(7), pages 601-626, May.
    16. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    17. Philippe Goulet Coulombe & Maximilian Gobel, 2023. "Maximally Machine-Learnable Portfolios," Working Papers 23-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Apr 2023.
    18. Brinkmann, Felix & Kempf, Alexander & Korn, Olaf, 2013. "Forward-looking measures of higher-order dependencies with an application to portfolio selection," CFR Working Papers 13-08, University of Cologne, Centre for Financial Research (CFR).
    19. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    20. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jfr:afr111:v:10:y:2021:i:4:p:34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sciedu Press (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.