IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2022-147-3.html
   My bibliography  Save this article

Can Social Norms Explain Long-Term Trends in Alcohol Use? Insights from Inverse Generative Social Science

Author

Listed:

Abstract

Social psychological theory posits entities and mechanisms that attempt to explain observable differences in behavior. For example, dual process theory suggests that an agent's behavior is influenced by intentional (arising from reasoning involving attitudes and perceived norms) and unintentional (i.e., habitual) processes. In order to pass the generative sufficiency test as an explanation of alcohol use, we argue that the theory should be able to explain notable patterns in alcohol use that exist in the population, e.g., the distinct differences in drinking prevalence and average quantities consumed by males and females. In this study, we further develop and apply inverse generative social science (iGSS) methods to an existing agent-based model of dual process theory of alcohol use. Using iGSS, implemented within a multi-objective grammar-based genetic program, we search through the space of model structures to identify whether a single parsimonious model can best explain both male and female drinking, or whether separate and more complex models are needed. Focusing on alcohol use trends in New York State, we identify an interpretable model structure that achieves high goodness-of-fit for both male and female drinking patterns simultaneously, and which also validates successfully against reserved trend data. This structure offers a novel interpretation of the role of norms in formulating drinking intentions, but the structure's theoretical validity is questioned by its suggestion that individuals with low autonomy would act against perceived descriptive norms. Improved evidence on the distribution of autonomy in the population is needed to understand whether this finding is substantive or is a modeling artefact.

Suggested Citation

  • Tuong Manh Vu & Charlotte Buckley & João A. Duro & Alan Brennan & Joshua M. Epstein & Robin Purhouse, 2023. "Can Social Norms Explain Long-Term Trends in Alcohol Use? Insights from Inverse Generative Social Science," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(2), pages 1-4.
  • Handle: RePEc:jas:jasssj:2022-147-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/26/2/4/4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben Fitzpatrick & Jason Martinez & Elizabeth Polidan & Ekaterini Angelis, 2015. "The Big Impact of Small Groups on College Drinking," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(3), pages 1-4.
    2. Gorman, D.M. & Mezic, J. & Mezic, I. & Gruenewald, P.J., 2006. "Agent-based modeling of drinking behavior: A preliminary model and potential applications to theory and practice," American Journal of Public Health, American Public Health Association, vol. 96(11), pages 2055-2060.
    3. Joshua M. Epstein, 2023. "Inverse Generative Social Science: Backward to the Future," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(2), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crokidakis, Nuno & Sigaud, Lucas, 2021. "Modeling the evolution of drinking behavior: A Statistical Physics perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Ben Fitzpatrick & Jason Martinez, 2012. "Agent-Based Modeling of Ecological Niche Theory and Assortative Drinking," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(2), pages 1-4.
    3. Hugo Gonzalez Villasanti & Danielle Madden & Kevin Passino & John Clapp, 2021. "A dynamic multilevel ecological approach to drinking event modelling and intervention," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(4), pages 473-487, August.
    4. Mário Amorim Lopes & Álvaro Santos Almeida & Bernardo Almada-Lobo, 2018. "Forecasting the medical workforce: a stochastic agent-based simulation approach," Health Care Management Science, Springer, vol. 21(1), pages 52-75, March.
    5. Jo-An Atkinson & Dylan Knowles & John Wiggers & Michael Livingston & Robin Room & Ante Prodan & Geoff McDonnell & Eloise O’Donnell & Sandra Jones & Paul S. Haber & David Muscatello & Nadine Ezard & Ng, 2018. "Harnessing advances in computer simulation to inform policy and planning to reduce alcohol-related harms," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 537-546, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2022-147-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.