IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2018-45-2.html
   My bibliography  Save this article

Network Meta-Metrics: Using Evolutionary Computation to Identify Effective Indicators of Epidemiological Vulnerability in a Livestock Production System Model

Author

Listed:

Abstract

We developed an agent-based susceptible/infective model which simulates disease incursions in the hog production chain networks of three U.S. states. Agent parameters, contact network data, and epidemiological spread patterns are output after each model run. Key network metrics are then calculated, some of which pertain to overall network structure, and others to each node's positionality within the network. We run statistical tests to evaluate the extent to which each network metric predicts epidemiological vulnerability, finding significant correlations in some cases, but no individual metric that serves as a reliable risk indicator. To investigate the complex interactions between network structure and node positionality, we use a genetic programming (GP) algorithm to search for mathematical equations describing combinations of individual metrics — which we call "meta-metrics" — that may better predict vulnerability. We find that the GP solutions — the best of which combine both global and node -level metrics — are far better indicators of disease risk than any individual metric, with meta-metrics explaining up to 91% of the variability in agent vulnerability across all three study areas. We suggest that this methodology could be applied to aid livestock epidemiologists in the targeting of biosecurity interventions, and also that the meta-metric approach may be useful to study a wide range of complex network phenomena.

Suggested Citation

  • Serge Wiltshire & Asim Zia & Christopher Koliba & Gabriela Bucini & Eric Clark & Scott Merrill & Julie Smith & Susan Moegenburg, 2019. "Network Meta-Metrics: Using Evolutionary Computation to Identify Effective Indicators of Epidemiological Vulnerability in a Livestock Production System Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(2), pages 1-8.
  • Handle: RePEc:jas:jasssj:2018-45-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/22/2/8/8.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LeBaron Blake & Winker Peter, 2008. "Introduction to the Special Issue on Agent-Based Models for Economic Policy Advice," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 141-148, April.
    2. Arnaud Z. Dragicevic, 2019. "Market Coordination Under Non-Equilibrium Dynamics," Networks and Spatial Economics, Springer, vol. 19(3), pages 697-715, September.
    3. Corrado Monti & Marco Pangallo & Gianmarco De Francisci Morales & Francesco Bonchi, 2022. "On learning agent-based models from data," Papers 2205.05052, arXiv.org, revised Nov 2022.
    4. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    5. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Gomes, Sharlene L. & Hermans, Leon M. & Thissen, Wil A.H., 2018. "Extending community operational research to address institutional aspects of societal problems: Experiences from peri-urban Bangladesh," European Journal of Operational Research, Elsevier, vol. 268(3), pages 904-917.
    7. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    8. John DiNardo & David S. Lee, 2010. "Program Evaluation and Research Designs," Working Papers 1228, Princeton University, Department of Economics, Industrial Relations Section..
    9. Mattia Guerini & Francesco Lamperti & Mauro Napoletano & Andrea Roventini & Tania Treibich, 2022. "Unconventional monetary policies in an agent-based model with mark-to-market standards," Review of Evolutionary Political Economy, Springer, vol. 3(1), pages 73-107, April.
    10. Hossein Sabzian & Mohammad Ali Shafia & Ali Maleki & Seyeed Mostapha Seyeed Hashemi & Ali Baghaei & Hossein Gharib, 2019. "Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners," Papers 1901.08932, arXiv.org.
    11. Colasante, Annarita, 2016. "Evolution of Cooperation in Public Good Game," MPRA Paper 72577, University Library of Munich, Germany.
    12. Fontana, Magda, 2010. "Can neoclassical economics handle complexity? The fallacy of the oil spot dynamic," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 584-596, December.
    13. Sylvain Barde & Sander van Der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," SciencePo Working papers Main hal-03458672, HAL.
    14. Colasante, Annarita, 2017. "Selection of the distributional rule as an alternative tool to foster cooperation in a Public Good Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 482-492.
    15. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    16. Gianluca Pallante & Mattia Guerini & Mauro Napoletano & Andrea Roventini, 2024. "Robust-less-fragile: Tackling Systemic Risk and Financial Contagion in a Macro Agent-Based Model," SciencePo Working papers Main hal-04576530, HAL.
    17. Bert, Federico E. & Rovere, Santiago L. & Macal, Charles M. & North, Michael J. & Podestá, Guillermo P., 2014. "Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems," Ecological Modelling, Elsevier, vol. 273(C), pages 284-298.
    18. Faber, Albert & Valente, Marco & Janssen, Peter, 2010. "Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion," Energy Policy, Elsevier, vol. 38(6), pages 2763-2775, June.
    19. Francesco Lamperti, 2015. "An Information Theoretic Criterion for Empirical Validation of Time Series Models," LEM Papers Series 2015/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2018-45-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.