IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2017-101-2.html
   My bibliography  Save this article

Networks, Percolation, and Consumer Demand

Author

Abstract

Understanding diffusion processes is key to market strategies as well as innovation and sustainability policies. In promoting new products and technologies, firms and governments need to understand the conditions favouring successful spread of these products. We propose a generic diffusion model based on percolation theory. Our reference is a new product diffusion in a social network through word-of-mouth. Given that consumers differ in their reservation prices, a critical price exists that defines a phase transition from a no-diffusion to a diffusion regime. As consumer surplus is maximised just below a product’s critical price, one can systematically compare the economic efficiency of network structures by investigating their critical price. Networks with low clustering were the most efficient, because clustering leads to redundant information flows hampering effective product diffusion. We further showed that the more equal a society, the more efficient the diffusion process.

Suggested Citation

  • Paolo Zeppini & Koen Frenken, 2018. "Networks, Percolation, and Consumer Demand," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(3), pages 1-1.
  • Handle: RePEc:jas:jasssj:2017-101-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/21/3/1/1.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alessandra Fogli & Laura Veldkamp, 2021. "Germs, Social Networks, and Growth [Unbundling Institutions]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(3), pages 1074-1100.
    2. Yaniv Dover & Jacob Goldenberg & Daniel Shapira, 2012. "Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data," Marketing Science, INFORMS, vol. 31(4), pages 689-712, July.
    3. Martin Hohnisch & Sabine Pittnauer & Dietrich Stauffer, 2008. "A percolation-based model explaining delayed takeoff in new-product diffusion," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(5), pages 1001-1017, October.
    4. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firouzeh Taghikhah & Tatiana Filatova & Alexey Voinov, 2021. "Where Does Theory Have It Right? A Comparison of Theory-Driven and Empirical Agent Based Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(2), pages 1-4.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    2. Saad, Mohsen & Samet, Anis, 2020. "Collectivism and commonality in liquidity," Journal of Business Research, Elsevier, vol. 116(C), pages 137-162.
    3. Solomon Sorin & Golo Natasa, 2013. "Minsky Financial Instability, Interscale Feedback, Percolation and Marshall–Walras Disequilibrium," Accounting, Economics, and Law: A Convivium, De Gruyter, vol. 3(3), pages 167-260, October.
    4. Fibich, Gadi & Levin, Tomer, 2020. "Percolation of new products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
    6. Thomas Grebel, 2011. "Innovation and Health," Books, Edward Elgar Publishing, number 14375.
    7. Lindner, Ines & Strulik, Holger, 2014. "From tradition to modernity: Economic growth in a small world," Journal of Development Economics, Elsevier, vol. 109(C), pages 17-29.
    8. Paolo Zeppini & Koen Frenken & Roland Kupers, 2013. "The complexity of transitions," Working Papers 13-04, Eindhoven Center for Innovation Studies, revised Mar 2013.
    9. Bichraoui-Draper, Najet & Xu, Ming & Miller, Shelie A. & Guillaume, Bertrand, 2015. "Agent-based life cycle assessment for switchgrass-based bioenergy systems," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 171-178.
    10. Paolo Zeppini & Koen Frenken, 2015. "Networks, Percolation, and Demand," Department of Economics Working Papers 38/15, University of Bath, Department of Economics.
    11. Garth Heutel & Erich Muehlegger, 2015. "Consumer Learning and Hybrid Vehicle Adoption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 125-161, September.
    12. Dutz, Mark A., 2013. "Resource reallocation and innovation : converting enterprise risks into opportunities," Policy Research Working Paper Series 6534, The World Bank.
    13. Maria Rosaria Carillo & Vincenzo Lombardo & Alberto Zazzaro, 2019. "The rise and fall of family firms in the process of development," Journal of Economic Growth, Springer, vol. 24(1), pages 43-78, March.
    14. Ho Kim & Juncai Jiang & Norris I. Bruce, 2021. "Discovering heterogeneous consumer journeys in online platforms: implications for networking investment," Journal of the Academy of Marketing Science, Springer, vol. 49(2), pages 374-396, March.
    15. Jayasekara, Dinithi N., 2021. "Can traditional farming practices explain attitudes towards scientific progress?," Economic Modelling, Elsevier, vol. 94(C), pages 320-339.
    16. Lindner, Ines & Strulik, Holger, 2014. "The great divergence: A network approach," University of Göttingen Working Papers in Economics 193, University of Goettingen, Department of Economics.
    17. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
    18. Junhui Cai & Dan Yang & Wu Zhu & Haipeng Shen & Linda Zhao, 2021. "Network regression and supervised centrality estimation," Papers 2111.12921, arXiv.org.
    19. Mounir Amdaoud & Giuseppe Arcuri & Nadine Levratto, 2021. "Are regions equal in adversity? A spatial analysis of spread and dynamics of COVID-19 in Europe," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(4), pages 629-642, June.
    20. Jiang, Yonglei & Timmermans, Harry J.P. & Yu, Bin, 2018. "Relocation of manufacturing industry from the perspective of transport accessibility – An application of percolation theory," Transport Policy, Elsevier, vol. 63(C), pages 10-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2017-101-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.