IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2007-1-1.html
   My bibliography  Save this article

Dynamic Agent Compression

Author

Abstract

We introduce a new method for processing agents in agent-based models that significantly improves the efficiency of certain models. Dynamic Agent Compression allows agents to shift in and out of a compressed state based on their changing levels of heterogeneity. Sets of homogeneous agents are stored in compact bins, making the model more efficient in its use of memory and computational cycles. Modelers can use this increased efficiency to speed up the execution times, to conserve memory, or to scale up the complexity or number of agents in their simulations. We describe in detail an implementation of Dynamic Agent Compression that is lossless, i.e., no model detail is discarded during the compression process. We also contrast lossless compression to lossy compression, which promises greater efficiency gains yet may introduce artifacts in model behavior. The advantages outweigh the overhead of Dynamic Agent Compression in models where agents are unevenly heterogeneous — where a set of highly heterogeneous agents are intermixed with numerous other agents that fall into broad internally homogeneous categories. Dynamic Agent Compression is not appropriate in models with few, exclusively complex, agents.

Suggested Citation

  • Stephen Wendel & Catherine Dibble, 2007. "Dynamic Agent Compression," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-9.
  • Handle: RePEc:jas:jasssj:2007-1-1
    as

    Download full text from publisher

    File URL: https://www.jasss.org/10/2/9/9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    2. Dibble, Catherine, 2006. "Computational Laboratories for Spatial Agent-Based Models," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 31, pages 1511-1548, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buda, Rodolphe, 2005. "Numerical Analysis in Econom(etr)ic Softwares: the Data-Memory Shortage Management," MPRA Paper 9145, University Library of Munich, Germany, revised 2007.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joe Oppenheimer & Stephen Wendel & Norman Frohlich, 2011. "Paradox lost: Explaining and modeling seemingly random individual behavior in social dilemmas," Journal of Theoretical Politics, , vol. 23(2), pages 165-187, April.
    2. Citera, Emanuele & Gouri Suresh, Shyam & Setterfield, Mark, 2023. "The network origins of aggregate fluctuations: A demand-side approach," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 111-123.
    3. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2017. "Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 117-140.
    4. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    5. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    6. repec:hal:spmain:info:hdl:2441/5bnglqth5987gaq6dhju3psjn3 is not listed on IDEAS
    7. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    8. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    9. Paul L. Borrill & Leigh Tesfatsion, 2011. "Agent-based Modeling: The Right Mathematics for the Social Sciences?," Chapters, in: John B. Davis & D. Wade Hands (ed.), The Elgar Companion to Recent Economic Methodology, chapter 11, Edward Elgar Publishing.
    10. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    11. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    12. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    13. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    14. Yoo, Seung Han, 2014. "Learning a population distribution," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 188-201.
    15. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Cees Diks & Cars Hommes & Valentyn Panchenko & Roy Weide, 2008. "E&F Chaos: A User Friendly Software Package for Nonlinear Economic Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 221-244, September.
    17. Qingxu Huang & Dawn C Parker & Tatiana Filatova & Shipeng Sun, 2014. "A Review of Urban Residential Choice Models Using Agent-Based Modeling," Environment and Planning B, , vol. 41(4), pages 661-689, August.
    18. Serena Brianzoni & Roy Cerqueti & Elisabetta Michetti, 2010. "A Dynamic Stochastic Model of Asset Pricing with Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 35(2), pages 165-188, February.
    19. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    20. Ashraf, Quamrul & Gershman, Boris & Howitt, Peter, 2017. "Banks, market organization, and macroeconomic performance: An agent-based computational analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 143-180.
    21. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2007-1-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.