IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2004-29-2.html
   My bibliography  Save this article

Simulating SARS: Small-World Epidemiological Modeling and Public Health Policy Assessments

Author

Abstract

The authors propose a novel small-world model that makes use of cellular automata with the mirror identities of daily-contact social networks to simulate epidemiological scenarios. We established the mirror identity concept (a miniature representation of frequently visited places) to acknowledge human long-distance movement and geographic mobility. Specifically, the model was used to a) simulate the dynamics of SARS transmission in Singapore, Taipei, and Toronto and b) discuss the effectiveness of the respective public health policies of those cities. We believe the model can be applied to influenza, enteroviruses, AIDS, and other contagious diseases according to the various needs of health authorities.

Suggested Citation

  • Chung-Yuan Huang & Chuen-Tsai Sun & Ji-Lung Hsieh & Holin Lin, 2004. "Simulating SARS: Small-World Epidemiological Modeling and Public Health Policy Assessments," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 7(4), pages 1-2.
  • Handle: RePEc:jas:jasssj:2004-29-2
    as

    Download full text from publisher

    File URL: http://jasss.soc.surrey.ac.uk/7/4/2.html
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    2. Xiao Xue & Shufang Wang & Baoyun Lu, 2015. "Computational Experiment Approach to Controlled Evolution of Procurement Pattern in Cluster Supply Chain," Sustainability, MDPI, vol. 7(2), pages 1-26, January.
    3. Teruhiko Yoneyama & Sanmay Das & Mukkai Krishnamoorthy, 2012. "A Hybrid Model for Disease Spread and an Application to the SARS Pandemic," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-5.
    4. Dario Esposito & Giovanni Dipierro & Alberico Sonnessa & Stefania Santoro & Simona Pascazio & Irene Pluchinotta, 2021. "Data-Driven Epidemic Intelligence Strategies Based on Digital Proximity Tracing Technologies in the Fight against COVID-19 in Cities," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    5. Yong Yang & Peter M Atkinson, 2008. "Individual Space – Time Activity-Based Model: A Model for the Simulation of Airborne Infectious-Disease Transmission by Activity-Bundle Simulation," Environment and Planning B, , vol. 35(1), pages 80-99, February.
    6. Phillip Stroud & Sara Del Valle & Stephen Sydoriak & Jane Riese & Susan Mniszewski, 2007. "Spatial Dynamics of Pandemic Influenza in a Massive Artificial Society," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-9.
    7. Xiaoguang Gong & Renbin Xiao, 2007. "Research on Multi-Agent Simulation of Epidemic News Spread Characteristics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2004-29-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.