IDEAS home Printed from https://ideas.repec.org/a/jae/japmet/v17y2002i5p419-424.html
   My bibliography  Save this article

Financial volatility: an introduction

Author

Listed:
  • Philip Hans Franses

    (Econometric Institute Erasmus University Rotterdam)

  • Michael McAleer

    (Department of Economics University of Western Australia)

Abstract

It is now 20 years since the publication of Engle's (1982) seminal paper, which introduced ARCH to the world. The ARCH paper had an enormous influence on both theoretical and applied econometrics, and was influential in the establishment of the discipline of Financial Econometrics. In this paper we provide an introduction to the special issue on modelling and forecasting financial volatility, which commemorates the Twentieth Anniversary of the publication of ARCH. Financial econometrics has become a mature discipline over the last two decades, and one of its major research objects is the modelling and forecasting of volatility. This special issue presents ten papers, all of which focus on volatility and risk. The papers examine issues such as the new frontiers of volatility, the selection of models for observed and unobserved volatility, the potential long-memory property of volatility, and the measurement of volatility. The commonality of papers is that they do not examine the extant literature, which has been reviewed elsewhere, but rather outline a number of important issues that are not only of current interest, but are likely to remain so for many years to come. Copyright © 2002 John Wiley & Sons, Ltd.

Suggested Citation

  • Philip Hans Franses & Michael McAleer, 2002. "Financial volatility: an introduction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 419-424.
  • Handle: RePEc:jae:japmet:v:17:y:2002:i:5:p:419-424
    DOI: 10.1002/jae.693
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/jae.693
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: http://qed.econ.queensu.ca:80/jae/2002-v17.5/
    File Function: Supporting data files and programs
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    2. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    3. Engle, Robert, 2001. "Financial econometrics - A new discipline with new methods," Journal of Econometrics, Elsevier, vol. 100(1), pages 53-56, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ooms, M., 2008. "Trends in Applied Econometrics Software Development 1985-2008, an analysis of Journal of Applied Econometrics research articles, software reviews, data and code," Serie Research Memoranda 0021, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Ling, Shiqing & McAleer, Michael & Tong, Howell, 2015. "Frontiers in Time Series and Financial Econometrics: An overview," Journal of Econometrics, Elsevier, vol. 189(2), pages 245-250.
    3. Caginalp, Carey & Caginalp, Gunduz & Swigon, David, 2021. "Stochastic asset flow equations: Interdependence of trend and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Caginalp, Carey & Caginalp, Gunduz, 2020. "Derivation of non-classical stochastic price dynamics equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    6. Carey Caginalp & Gunduz Caginalp, 2019. "Derivation of non-classical stochastic price dynamics equations," Papers 1908.01103, arXiv.org, revised Aug 2020.
    7. Junru Zhang & Hadrian Geri Djajadikerta & Zhaoyong Zhang, 2018. "Does Sustainability Engagement Affect Stock Return Volatility? Evidence from the Chinese Financial Market," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    8. Ekong, Christopher N. & Onye, Kenneth U., 2017. "Application of Garch Models to Estimate and Predict Financial Volatility of Daily Stock Returns in Nigeria," MPRA Paper 88309, University Library of Munich, Germany.
    9. Ipek M. Yurttaguler, 2024. "Analysis of Istanbul Stock Market Returns Volatility with ARCH and GARCH Models," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 73(74-1), pages 37-58, June.
    10. Ling, S. & McAleer, M.J. & Tong, H., 2015. "Frontiers in Time Series and Financial Econometrics," Econometric Institute Research Papers EI 2015-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    12. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    13. Liu, Heping & Erdem, Ergin & Shi, Jing, 2011. "Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed," Applied Energy, Elsevier, vol. 88(3), pages 724-732, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    3. repec:wyi:journl:002098 is not listed on IDEAS
    4. Scott Moss & Bruce Edmonds, 2005. "Towards Good Social Science," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-13.
    5. Afees A. Salisu & Tirimisyu F. Oloko, 2017. "Are daily agricultural grains prices stationary? New evidence from GARCH-based unit root tests," Working Papers 036, Centre for Econometric and Allied Research, University of Ibadan.
    6. Alva, Kenedy, 2009. "Modelling intra-daily volatility by functional data analysis: an empirical application to the spanish stock market," DES - Working Papers. Statistics and Econometrics. WS ws092809, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Elena Andreou & Eric Ghysels, 2002. "Tests for Breaks in the Conditional Co-movements of Asset Returns," CIRANO Working Papers 2002s-59, CIRANO.
    8. Riascos, Julio César & Munoz, Jesus Enrique Molina, 2016. "Breves consideraciones acerca de la importancia de los árboles de decisión en el análisis de carteras," Revista Tendencias, Universidad de Narino, vol. 17(1), pages 11-33, January.
    9. Feng, Yuanhua, 2006. "A local dynamic conditional correlation model," MPRA Paper 1592, University Library of Munich, Germany.
    10. Emeka Nkoro & Aham Kelvin Uko, 2016. "Exchange Rate and Inflation Volatility and Stock Prices Volatility: Evidence from Nigeria, 1986-2012," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(6), pages 1-4.
    11. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    12. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    13. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    14. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    15. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    16. Adugna Lemi & Sisay Asefa, 2009. "Differential Impacts of Economic Volatility and Governance on Manufacturing and Non-Manufacturing Foreign Direct Investments: The Case of US Multinationals in Africa," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 35(3), pages 367-395.
    17. Zia-Ur- Rahman, 2019. "Influence of Excessive Expenditure of the Government in Perspective of Interest Rate and Money Circulation Which in Turn Affects the Growing Process in Pakistan," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 6(2), pages 120-129.
    18. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    19. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    20. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    21. Geert Bekaert & Campbell R. Harvey, 2000. "Capital Flows and the Behavior of Emerging Market Equity Returns," NBER Chapters, in: Capital Flows and the Emerging Economies: Theory, Evidence, and Controversies, pages 159-194, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:17:y:2002:i:5:p:419-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.