IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h051439.html
   My bibliography  Save this article

Understanding human-water feedbacks of interventions in agricultural systems with agent based models: a review

Author

Listed:
  • Alam, Mohammad Faiz
  • McClain, M.
  • Sikka, Alok
  • Pande, S.

Abstract

Increased variability of the water cycle manifested by climate change is a growing global threat to agriculture with strong implications for food and livelihood security. Thus, there is an urgent need for adaptation in agriculture. Agricultural water management (AWM) interventions, interventions for managing water supply and demand, are extensively promoted and implemented as adaptation measures in multiple development programs globally. Studies assessing these adaptation measures overwhelmingly focus on positive impacts, however, there is a concern that these studies may be biased towards well-managed and successful projects and often miss out on reporting negative externalities. These externalities result from coevolutionary dynamics of human-water systems as AWM interventions impact hydrological flows and their use and adoption is shaped by the societal response. We review the documented externalities of AWM interventions and present a conceptual framework classifying negative externalities linked to water and human systems into negative hydrological externalities and unexpected societal feedbacks. We show that these externalities can lead to long term unsustainable and inequitable outcomes. Understanding how the externalities lead to undesirable outcomes demands rigorous modeling of the feedbacks between human and water systems, for which we discuss the key criteria that such models should meet. Based on these criteria, we showcase that differentiated and limited inclusion of key feedbacks in current water modeling approaches (e.g., hydrological models, hydro-economic, and water resource models) is a critical limitation and bottleneck to understanding and predicting negative externalities of AWM interventions. To account for the key feedback, we find Agent Based Modeling (ABM) as the method that has the potential to meet the key criteria. Yet there are gaps that need to be addressed in the context of ABM as a tool to unravel the negative externalities of AWM interventions. We carry out a systemic review of ABM application to agricultural systems, capturing how it is currently being applied and identifying the knowledge gaps that need to be bridged to unravel the negative externalities of AWM interventions. We find that ABM has been extensively used to model agricultural systems and, in many cases, the resulting externalities with unsustainable and inequitable outcomes. However, gaps remain in terms of limited use of integrated surface-groundwater hydrological models, inadequate representation of farmers' behavior with heavy reliance on rational choice or simple heuristics and ignoring heterogeneity of farmers' characteristics within a population.

Suggested Citation

  • Alam, Mohammad Faiz & McClain, M. & Sikka, Alok & Pande, S., 2022. "Understanding human-water feedbacks of interventions in agricultural systems with agent based models: a review," Papers published in Journals (Open Access), International Water Management Institute, pages 1-17(10):10.
  • Handle: RePEc:iwt:jounls:h051439
    DOI: 10.1088/1748-9326/ac91e1
    as

    Download full text from publisher

    File URL: https://iopscience.iop.org/article/10.1088/1748-9326/ac91e1/pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1088/1748-9326/ac91e1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Shiwei & Li, Xin & Du, Erhu, 2021. "Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies," Agricultural Water Management, Elsevier, vol. 247(C).
    2. Bouma, Jetske A. & Biggs, Trent W. & Bouwer, Laurens M., 2011. "The downstream externalities of harvesting rainwater in semi-arid watersheds: An Indian case study," Agricultural Water Management, Elsevier, vol. 98(7), pages 1162-1170, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    2. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    3. Datta, Nirupam, 2015. "Evaluating Impacts of Watershed Development Program on Agricultural Productivity, Income, and Livelihood in Bhalki Watershed of Bardhaman District, West Bengal," World Development, Elsevier, vol. 66(C), pages 443-456.
    4. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    5. Wang, Shunke & Chang, Jingjing & Xue, Jie & Sun, Huaiwei & Zeng, Fanjiang & Liu, Lei & Liu, Xin & Li, Xinxin, 2024. "Coupling behavioral economics and water management policies for agricultural land-use planning in basin irrigation districts: Agent-based socio-hydrological modeling and application," Agricultural Water Management, Elsevier, vol. 298(C).
    6. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    7. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    8. Giordano, Meredith & de Fraiture, Charlotte, 2014. "Small private irrigation: Enhancing benefits and managing trade-offs," Agricultural Water Management, Elsevier, vol. 131(C), pages 175-182.
    9. Mwangi Joseph Kanyua, 2020. "Effect of Imposed Self-Governance on Irrigation Rules Design among Horticultural Producers in Peri-Urban Kenya," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    10. Ran Sun & James Nolan & Suren Kulshreshtha, 2022. "Agent-based modeling of policy induced agri-environmental technology adoption," SN Business & Economics, Springer, vol. 2(8), pages 1-26, August.
    11. Kumar, Shalander & Ramilan, Thiagarajah & Ramarao, C.A. & Rao, Ch. Srinivasa & Whitbread, Anthony, 2016. "Farm level rainwater harvesting across different agro climatic regions of India: Assessing performance and its determinants," Agricultural Water Management, Elsevier, vol. 176(C), pages 55-66.
    12. Yunxian Yan & Lingqing Wang & Jun Yang, 2022. "The Willingness and Technology Preferences of Farmers and Their Influencing Factors for Soil Remediation," Land, MDPI, vol. 11(10), pages 1-15, October.
    13. S. Nedumaran & Beleke Shiferaw & M. Bantilan & K. Palanisami & Suhas Wani, 2014. "Bioeconomic modeling of farm household decisions for ex-ante impact assessment of integrated watershed development programs in semi-arid India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 257-286, April.
    14. Gaofeng Ren & Xiao Cui, 2024. "The Government–Farmer Cooperation Mechanism and Its Implementation Path to Realize the Goals of Optimizing Grain Planting Structure," Land, MDPI, vol. 13(3), pages 1-25, March.
    15. Bouma, Jetske A. & Hegde, Seema S. & Lasage, Ralph, 2016. "Assessing the returns to water harvesting: A meta-analysis," Agricultural Water Management, Elsevier, vol. 163(C), pages 100-109.
    16. Ralph Lasage & Jeroen Aerts & Peter Verburg & Alemu Sileshi, 2015. "The role of small scale sand dams in securing water supply under climate change in Ethiopia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 317-339, February.
    17. Harshita Bhat & Pleasa Serin Abraham, 2021. "Factors affecting Water Conservation Potential of Domestic Rain Water Harvesting- A Study on Bengaluru Urban," BASE University Working Papers 12/2021, BASE University, Bengaluru, India.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h051439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.