IDEAS home Printed from https://ideas.repec.org/a/ist/ekoist/v0y2021i35p19-32.html
   My bibliography  Save this article

Prediction Using Artificial Neural Network of Turkey's Housing Sales Value

Author

Listed:
  • Burcu Yaman Selci

    (Pamukkale Universitesi, Denizli Sosyal Bilimler Meslek Yuksekokulu Dis Ticaret Bolumu, Denizli, Turkiye)

Abstract

In order to keep the supply and demand in the real estate sector in balance, it is very important to make accurate estimates of house sales with an analysis method that can make strong predictions. However, it is noteworthy that the number of studies focusing on house sales estimates in the literature is quite low and the number of studies that make predictions with artificial neural networks from new generation techniques is remarkable. Therefore the aim of this study is to contribute to the prediction and forecasting of sales literature houses in Turkey performing with artificial neural networks. In the study, housing-price index, new housing-price index, non-new housing-price index, house sales to foreigners, interest rates opened to housing loans over TL, consumer price index and exchange rate were selected as independent variables and residential sales were used as dependent variables. A model has been developed in neural networks. The data were taken monthly to cover the periods of 2013: 01-2019: 12 and the analyzes were carried out in the MATLAB R2013a program. Using the NARX network for prediction and forecasting analysis, the prediction of 2013: 01- 2019: 12 period and the prediction of 2020: 01 period was obtained. MSE was used as a performance criterion. As a result of the analysis, it has been determined that the predicted values produced by artificial neural networks and the predictive value of 2020: 01 are quite close to real values and artificial neural networks can detect seasonal effects. The smallness of the MSE value also proved the success of forecasting and forecasting. This confirms that artificial neural networks produce strong statistical results in predicting and predicting residential sales.

Suggested Citation

  • Burcu Yaman Selci, 2021. "Prediction Using Artificial Neural Network of Turkey's Housing Sales Value," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(35), pages 19-32, December.
  • Handle: RePEc:ist:ekoist:v:0:y:2021:i:35:p:19-32
    DOI: 10.26650/ekoist.2021.35.180033
    as

    Download full text from publisher

    File URL: https://cdn.istanbul.edu.tr/file/JTA6CLJ8T5/96F120FBD41D4D32BB29DA789196807C
    Download Restriction: no

    File URL: https://iupress.istanbul.edu.tr/en/journal/ekoist/article/turkiyenin-konut-satisi-degerlerinin-yapay-sinir-aglari-ile-ongorulmesi
    Download Restriction: no

    File URL: https://libkey.io/10.26650/ekoist.2021.35.180033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zina Boussaada & Octavian Curea & Ahmed Remaci & Haritza Camblong & Najiba Mrabet Bellaaj, 2018. "A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation," Energies, MDPI, vol. 11(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    2. Anshuman Satapathy & Niranjan Nayak & Tanmoy Parida, 2022. "Real-Time Power Quality Enhancement in a Hybrid Micro-Grid Using Nonlinear Autoregressive Neural Network," Energies, MDPI, vol. 15(23), pages 1-35, November.
    3. Oksana Mandrikova & Yuryi Polozov & Nataly Zhukova & Yulia Shichkina, 2022. "Approximation and Analysis of Natural Data Based on NARX Neural Networks Involving Wavelet Filtering," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    4. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    5. Fjelkestam Frederiksen, Cornelia A. & Cai, Zuansi, 2022. "Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance," Applied Energy, Elsevier, vol. 306(PB).
    6. Sufyan Samara & Emad Natsheh, 2020. "Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    7. Salma Hamad Almuhaini & Nahid Sultana, 2023. "Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management," Energies, MDPI, vol. 16(4), pages 1-28, February.
    8. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2020. "Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models," Energies, MDPI, vol. 13(17), pages 1-12, August.
    9. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    10. Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.
    11. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm," Energies, MDPI, vol. 12(15), pages 1-13, July.
    13. Sylwia Radomska, 2021. "Prognozowanie indeksu WIG20 za pomocą sieci neuronowych NARX i metody SVM," Bank i Kredyt, Narodowy Bank Polski, vol. 52(5), pages 457-472.
    14. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    15. SeyedAli Ghahari & Cesar Queiroz & Samuel Labi & Sue McNeil, 2021. "Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)—An Artificial Neural Network Analysis," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    16. Oksana Mandrikova & Nadezhda Fetisova & Yuriy Polozov, 2021. "Hybrid Model for Time Series of Complex Structure with ARIMA Components," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
    17. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    18. Mehdi Ganjkhani & Seyedeh Narjes Fallah & Sobhan Badakhshan & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "A Novel Detection Algorithm to Identify False Data Injection Attacks on Power System State Estimation," Energies, MDPI, vol. 12(11), pages 1-19, June.
    19. Elias Roumpakias & Tassos Stamatelos, 2023. "Comparative Performance Analysis of a Grid-Connected Photovoltaic Plant in Central Greece after Several Years of Operation Using Neural Networks," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    20. Vladimir J. Alarcon, 2021. "Hindcasting and Forecasting Total Suspended Sediment Concentrations Using a NARX Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ist:ekoist:v:0:y:2021:i:35:p:19-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ertugrul YASAR (email available below). General contact details of provider: https://edirc.repec.org/data/ifisttr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.