IDEAS home Printed from https://ideas.repec.org/a/ist/ancoec/v13y2011i1p114-124.html
   My bibliography  Save this article

A Discrete Particle Swarm Optimization Algorithm for Bi-Criteria Warehouse Location Problem

Author

Listed:
  • Fehmi Burcin Ozsoydan

    (Osmangazi University)

  • Tugba Sarac

    (Osmangazi University)

Abstract

The uncapacitated warehouse location problem (UWLP) is one of the widely studied discrete location problems, in which the nodes (customers) are connected to a number (w) of warehouses in such a way that the total cost, yields from the dissimilarities (distances) and from the fixed costs of the warehouses is minimized. Despite w is considered as fixed integer number, the UWLP is NP-hard. If the UWLP has two or more objective functions and w is an integer variable, the UWLP becomes more complex. Large size of this kind of complex problems can be solved by using heuristic algorithms or artificial intelligent techniques. It’s shown that Particle Swarm Optimization (PSO) which is one of the technique of artificial intelligent techniques, has achieved a notable success for continuous optimization, however, PSO implementations and applications for combinatorial optimization are still active research area that to the best of our knowledge fewer studies have been carried out on this topic. In this study, the bi-criteria UWLP of minimizing the total distance and total opening cost of warehouses. is presented and it’s shown that promising results are obtained.

Suggested Citation

  • Fehmi Burcin Ozsoydan & Tugba Sarac, 2011. "A Discrete Particle Swarm Optimization Algorithm for Bi-Criteria Warehouse Location Problem," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 13(1), pages 114-124, Special I.
  • Handle: RePEc:ist:ancoec:v:13:y:2011:i:1:p:114-124
    as

    Download full text from publisher

    File URL: http://eidergisi.istanbul.edu.tr/sayi13/iueis13m7.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francis, Richard L. & McGinnis, Leon F. & White, John A., 1983. "Locational analysis," European Journal of Operational Research, Elsevier, vol. 12(3), pages 220-252, March.
    2. Krarup, Jakob & Pruzan, Peter Mark, 1983. "The simple plant location problem: Survey and synthesis," European Journal of Operational Research, Elsevier, vol. 12(1), pages 36-57, January.
    3. Frankel, Jeffrey & Stock, James, 1989. "Empirical modeling of exchange rate dynamics : Francis Diebold, Lecture notes in economics and mathematical systems no. 303 (Springer-Verlag, Berlin, 1988) pp. 143, $19.40," Journal of International Economics, Elsevier, vol. 27(1-2), pages 185-189, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myung, Young-Soo & Kim, Hu-gon & Tcha, Dong-wan, 1997. "A bi-objective uncapacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 100(3), pages 608-616, August.
    2. Chandra Ade Irawan & Dylan Jones, 2019. "Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities," Annals of Operations Research, Springer, vol. 272(1), pages 41-67, January.
    3. Hammami, Ramzi & Frein, Yannick & Hadj-Alouane, Atidel B., 2009. "A strategic-tactical model for the supply chain design in the delocalization context: Mathematical formulation and a case study," International Journal of Production Economics, Elsevier, vol. 122(1), pages 351-365, November.
    4. Kuschel, Torben & Bock, Stefan, 2016. "The weighted uncapacitated planned maintenance problem: Complexity and polyhedral properties," European Journal of Operational Research, Elsevier, vol. 250(3), pages 773-781.
    5. Feng Dai & Yi Chen, 2023. "Integrated dynamic municipal solid waste transfer station location decision study based on the dynamic MSW generation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6033-6047, July.
    6. Luís M. Fernandes & Joaquim J. Júdice & Hanif D. Sherali & António P. Antunes, 2011. "Siting and Sizing of Facilities under Probabilistic Demands," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 420-440, May.
    7. Leyla Ozsen & Collette R. Coullard & Mark S. Daskin, 2008. "Capacitated warehouse location model with risk pooling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 295-312, June.
    8. Harkness, Joseph & ReVelle, Charles, 2003. "Facility location with increasing production costs," European Journal of Operational Research, Elsevier, vol. 145(1), pages 1-13, February.
    9. Mazzola, Joseph B. & Neebe, Alan W., 1999. "Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type," European Journal of Operational Research, Elsevier, vol. 115(2), pages 285-299, June.
    10. Khachatryan, Hayk & Jessup, Eric & Casavant, Kenneth, 2010. "A GIS-based Estimation of Regional Biomass Supply and Transportation Costs for Biofuel Plant Least-Cost Location Decisions," 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, 2010 207816, Transportation Research Forum.
    11. Melachrinoudis, Emanuel & Min, Hokey, 2000. "The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach," European Journal of Operational Research, Elsevier, vol. 123(1), pages 1-15, May.
    12. Koksalan, Murat & Sural, Haldun & Kirca, Omer, 1995. "A location-distribution application for a beer company," European Journal of Operational Research, Elsevier, vol. 80(1), pages 16-24, January.
    13. Min, Hokey & Ko, Hyun-Jeung, 2008. "The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers," International Journal of Production Economics, Elsevier, vol. 113(1), pages 176-192, May.
    14. Sakawa, Masatoshi & Nishizaki, Ichiro & Uemura, Yoshio, 2001. "Fuzzy programming and profit and cost allocation for a production and transportation problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 1-15, May.
    15. Berman, Oded & Krass, Dmitry & Menezes, Mozart B.C., 2016. "Directed assignment vs. customer choice in location inventory models," International Journal of Production Economics, Elsevier, vol. 179(C), pages 179-191.
    16. Abdolsalam Ghaderi, 2015. "Heuristic Algorithms for Solving an Integrated Dynamic Center Facility Location - Network Design Model," Networks and Spatial Economics, Springer, vol. 15(1), pages 43-69, March.
    17. Shulin Wang & Shanhua Wu, 2023. "Optimizing the Location of Virtual-Shopping-Experience Stores Based on the Minimum Impact on Urban Traffic," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    18. Chloe Kim Glaeser & Marshall Fisher & Xuanming Su, 2019. "Optimal Retail Location: Empirical Methodology and Application to Practice," Service Science, INFORMS, vol. 21(1), pages 86-102, January.
    19. Francisco Casas & Claudio E. Torres & Ignacio Araya, 2022. "A heuristic search based on diversity for solving combinatorial problems," Journal of Heuristics, Springer, vol. 28(3), pages 287-328, June.
    20. Kurt Jörnsten & Andreas Klose, 2016. "An improved Lagrangian relaxation and dual ascent approach to facility location problems," Computational Management Science, Springer, vol. 13(3), pages 317-348, July.

    More about this item

    Keywords

    Warehouse Location Problem; Particle Swarm Optimization; Discrete Location Problems; Bi-criteria.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ist:ancoec:v:13:y:2011:i:1:p:114-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ertugrul YASAR (email available below). General contact details of provider: https://edirc.repec.org/data/ifisttr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.