IDEAS home Printed from https://ideas.repec.org/a/ipn/panora/vxy2014i19p77-101.html
   My bibliography  Save this article

Selección de portafolios de inversión incluyendo el efecto de asimetría: evidencia con activos de la Bolsa Mexicana de Valores

Author

Listed:
  • Flores-Ortega, Miguel.

    (Escuela Superior de Economía, Instituto Politécnico Nacional)

  • Flores-Castillo, Lilia Alejandra.

    (Escuela Superior de Economía, Instituto Politécnico Nacional)

  • Paredes-Gómez, Angelica.

    (Escuela Superior de Economía, Instituto Politécnico Nacional)

Abstract

En este trabajo se presenta la evidencia empírica de incorporar el efecto de la asimetría del rendimineto de los activos en el modelo de portafolio para la selección de los activos y su participación en la integración un portafolio de inversión. Se realiza la revisión teórica de la metodología utilizada y se presenta el contraste de los resultados del modelo de Markowitz que utiliza únicamente la media y la varianza media-varianza y el modelo que incorpora la asimetría. La metodología que se utiliza plantea un problema de optimización multiobjetivo, que selecciona el portafolio de inversión que minimiza la función multiobjetivo, con lo cual se logra la optimización simultánea de los objetivos particulares de media, varianza y asimetría. Los resultados muestran que es posible disminuir la probabilidad de rendimientos negativos y pérdidas en el caso de seleccionar el portafolio con mayor asimetría positiva. La modelo valida todas las posibilidades de selección del nivel de aversión al riesgo, rendimiento y asimetría, el enfoque que se presenta tiene la ventaja de ser flexible y la selección de los activos se expresa de forma matemática en un espacio definido por la varianza, la expectativa de rendimiento y su asimetría. El trabajo presenta evidencia empírica con activos de la Bolsa Mexicana de Valores./ This paper shows the empirical evidence of the effect of asymmetry of return assets in the portfolio selection and integrates their participation in an investment portfolio. The theoretical review of the methodology is performed and contrasts a results Markowitz model that uses only the mean and variance and mean-variance model incorporating asymmetry effect. The methodology propose a problem of multi-objective optimization, which selects the investment portfolio that minimizes the multi-objective function, whereby the simultaneous optimization of the specific aims of mean, variance and skewness is achieved. The results show that it is possible to decrease the probability of negative returns and losses in the case of selecting the portfolio more positively skewed. The model validates all selection options level of risk aversion, performance or asymmetry, the approach presented has the advantage of being flexible and selection of assets is expressed mathematically in a space defined by the variance, expected return and asymmetry. The paper presents empirical evidence of the Mexican stock exchange assets

Suggested Citation

  • Flores-Ortega, Miguel. & Flores-Castillo, Lilia Alejandra. & Paredes-Gómez, Angelica., 2014. "Selección de portafolios de inversión incluyendo el efecto de asimetría: evidencia con activos de la Bolsa Mexicana de Valores," Panorama Económico, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(19), pages 77-101, segundo s.
  • Handle: RePEc:ipn:panora:v:x:y:2014:i:19:p:77-101
    as

    Download full text from publisher

    File URL: http://yuss.me/revistas/panorama/pano2014v10n19a04p077_101.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chunhachinda, Pornchai & Dandapani, Krishnan & Hamid, Shahid & Prakash, Arun J., 1997. "Portfolio selection and skewness: Evidence from international stock markets," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 143-167, February.
    2. Arditti, Fred D., 1971. "Another Look at Mutual Fund Performance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(3), pages 909-912, June.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Rubinstein, Mark E., 1973. "The Fundamental Theorem of Parameter-Preference Security Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(1), pages 61-69, January.
    5. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2001. "Using investment portfolio return to combine forecasts: A multiobjective approach," European Journal of Operational Research, Elsevier, vol. 134(1), pages 84-102, October.
    6. Kane, Alex, 1982. "Skewness Preference and Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(1), pages 15-25, March.
    7. Simkowitz, Michael A. & Beedles, William L., 1978. "Diversification in a Three-Moment World," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(5), pages 927-941, December.
    8. Paul A. Samuelson, 1970. "The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(4), pages 537-542.
    9. Luis Zuluaga & Samuel Cox, 2010. "Improving Skewness of Mean-Variance Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 59-67.
    10. Hanoch, Giora & Levy, Haim, 1970. "Efficient Portfolio Selection with Quadratic and Cubic Utility," The Journal of Business, University of Chicago Press, vol. 43(2), pages 181-189, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunhachinda, Pornchai & Dandapani, Krishnan & Hamid, Shahid & Prakash, Arun J., 1997. "Portfolio selection and skewness: Evidence from international stock markets," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 143-167, February.
    2. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    3. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    4. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    5. K. Saranya & P. Prasanna, 2014. "Portfolio Selection and Optimization with Higher Moments: Evidence from the Indian Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 133-149, May.
    6. Gourieroux, C. & Monfort, A., 2005. "The econometrics of efficient portfolios," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 1-41, January.
    7. Kerstens, Kristiaan & Mounir, Amine & Van de Woestyne, Ignace, 2011. "Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function," European Journal of Operational Research, Elsevier, vol. 210(1), pages 81-94, April.
    8. Chiao, Chaoshin & Hung, Ken & Srivastava, Suresh C., 2003. "Taiwan stock market and four-moment asset pricing model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 13(4), pages 355-381, October.
    9. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Asset prices and “the devil(s) you know”," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 20-35.
    10. Gulder Kemalbay & C. Murat Ozkut & Ceki Franko, 2011. "Portfolio Selection with Higher Moments: A Polynomial Goal Programming Approach to ISE-30 Index," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 13(1), pages 41-61, Special I.
    11. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2015. "Efficient Skewness/Semivariance Portfolios," GEMF Working Papers 2015-05, GEMF, Faculty of Economics, University of Coimbra.
    12. Paweł Wnuk Lipinski, 2013. "Portfolio selection models based on characteristics of return distributions," Working Papers 2013-14, Faculty of Economic Sciences, University of Warsaw.
    13. Trino-Manuel Niguez & Ivan Paya & David Peel & Javier Perote, 2013. "Higher-order moments in the theory of diversification and portfolio composition," Working Papers 18297128, Lancaster University Management School, Economics Department.
    14. Raj Aggarwal & Ramesh P. Rao & Takato Hiraki, 1989. "Skewness And Kurtosis In Japanese Equity Returns: Empirical Evidence," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 12(3), pages 253-260, September.
    15. Panait, Iulian & Slavescu, Ecaterina Oana, 2012. "Skewness in stock returns: evidence from the Bucharest stock exchange during 2000 – 2011," MPRA Paper 38751, University Library of Munich, Germany.
    16. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, October.
    17. Prakash, Arun J. & Chang, Chun-Hao & Pactwa, Therese E., 2003. "Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets," Journal of Banking & Finance, Elsevier, vol. 27(7), pages 1375-1390, July.
    18. Tee, Kai-Hong, 2009. "The effect of downside risk reduction on UK equity portfolios included with Managed Futures Funds," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 303-310, December.
    19. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    20. Monica Billio & Bertrand Maillet & Loriana Pelizzon, 2022. "A meta-measure of performance related to both investors and investments characteristics," Annals of Operations Research, Springer, vol. 313(2), pages 1405-1447, June.

    More about this item

    Keywords

    portafolio de inversión; optimización; teoría de la decisión estadística./ portfolio investment; optimization; statistical decision theory.;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipn:panora:v:x:y:2014:i:19:p:77-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juan Marroquín-Arreola (email available below). General contact details of provider: https://edirc.repec.org/data/eeipnmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.