IDEAS home Printed from https://ideas.repec.org/a/inp/inpana/v8y2014i2p7-23.html
   My bibliography  Save this article

Estimación espectral de datos ambientales no equiespaciados vía el periodograma suavizado de Lomb-Scargle. Una breve revisión

Author

Listed:
  • Josué M. Polanco-Martínez

    (Basque Centre for Climate Change, Bilbao, España)

Abstract

El periodograma suavizado de Lomb-Scargle es una técnica de análisis espectral que se aplica de modo directo a series temporales no equiespaciadas. Aunque derivado originalmente para operar con series temporales astronómicas no equiespaciadas temporalmente [2, 17, 38, 39], a finales de los noventa fue adaptado por Schulz y Stattegger [43] en combinación con la técnica WOSA (Welch-Overlapped-Segment-Averaging) [49] para operar con series temporales ambientales (principalmente climáticas) no equiespacidas temporalmente. Un poco más tarde, Schulz y Mudelsee [42] hicieron mejoras al trabajo de Schulz y Stattegger para tener en cuenta el tipo de ruido de fondo (“rojo”) que suelen presentar las series ambientales. Debido a la necesidad de estimar el espectro suavizado a series temporales ambientales no equiespaciadas temporalmente, es necesario contar con información suficiente y de libre acceso sobre esta temática. Hoy por hoy, es posible encontrar una buena cantidad de publicaciones en inglés sobre este método (v. gr., [23, 24, 28, 29, 42, 43]), pero hay una carencia de información en idioma español (salvo algunas excepciones, como Polanco-Martínez [31] y Pardo-Igúzquiza y Rodríguez-Tovar [27]). Por estas razones, en este artículo de revisión, se presenta de manera concisa toda la información pertinente para estimar el espectro suavizado de series temporales ambientales no equiespaciadas, mediante el periodograma de Lomb-Scargle y teniendo en cuenta el ruido de fondo rojo de las series ambientales.

Suggested Citation

  • Josué M. Polanco-Martínez, 2014. "Estimación espectral de datos ambientales no equiespaciados vía el periodograma suavizado de Lomb-Scargle. Una breve revisión," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 8(2), pages 7-23, Diciembre.
  • Handle: RePEc:inp:inpana:v:8:y:2014:i:2:p:7-23
    as

    Download full text from publisher

    File URL: http://www.numericaiid.com/pdf/vol8/ANADic2014_7_23.pdf
    Download Restriction: no

    File URL: http://www.numericaiid.com/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathias, Adolf & Grond, Florian & Guardans, Ramon & Seese, Detlef & Canela, Miguel & Diebner, Hans H., 2004. "Algorithms for Spectral Analysis of Irregularly Sampled Time Series," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i02).
    2. John D. Paulus & Robert S. Gay, 1987. "Analysis," Challenge, Taylor & Francis Journals, vol. 30(2), pages 54-57, March.
    3. Robinson, P. M., 1977. "Estimation of a time series model from unequally spaced data," Stochastic Processes and their Applications, Elsevier, vol. 6(1), pages 9-24, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Hans Franses, 2021. "Estimating persistence for irregularly spaced historical data," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(6), pages 2177-2187, December.
    2. Berggren, Niclas & Jordahl, Henrik & Poutvaara, Panu, 2017. "The right look: Conservative politicians look better and voters reward it," Journal of Public Economics, Elsevier, vol. 146(C), pages 79-86.
    3. Yacine Ait--Sahalia & Per A. Mykland, 2003. "The Effects of Random and Discrete Sampling when Estimating Continuous--Time Diffusions," Econometrica, Econometric Society, vol. 71(2), pages 483-549, March.
    4. Massimiliano Marcellino & Oscar Jorda, "undated". "Stochastic Processes Subject to Time-Scale Transformations: An Application to High-Frequency FX Data," Working Papers 164, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. P. Thomson, 1992. "Signal estimation using stochastic velocity models and irregular arrays," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 13-25, March.
    6. Vilar, José A. & Vilar, Juan M., 2000. "Finite sample performance of density estimators from unequally spaced data," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 63-73, October.
    7. Peter Robinson, 2007. "Correlation testing in time series, spatial and cross-sectional data," CeMMAP working papers CWP01/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. repec:cep:stiecm:/2013/568 is not listed on IDEAS
    9. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    10. David Albouy, 2008. "Are Big Cities Bad Places to Live? Estimating Quality of Life across Metropolitan Areas," NBER Working Papers 14472, National Bureau of Economic Research, Inc.
    11. Liu, Wei & Denizci Guillet, Basak & Xiao, Qu & Law, Rob, 2014. "Globalization or localization of consumer preferences: The case of hotel room booking," Tourism Management, Elsevier, vol. 41(C), pages 148-157.
    12. repec:rre:publsh:v:33:y:2003:i:3:p:296-312 is not listed on IDEAS
    13. Anand Desai, 2008. "Quantitative methods, economics, and or models," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 640-669.
    14. Massimiliano Marcellino & Oscar Jorda, "undated". "Stochastic Processes Subject to Time-Scale Transformations: An Application to High-Frequency FX Data," Working Papers 164, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    15. Sands, Brian D., 1992. "The Transrapid Magnetic Levitation System: A Technical and Commercial Assessment," University of California Transportation Center, Working Papers qt6ds64496, University of California Transportation Center.
    16. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    17. Robinson, Peter, 2008. "Correlation testing in time series, spatial and cross-sectional data," LSE Research Online Documents on Economics 25470, London School of Economics and Political Science, LSE Library.
    18. Gabriel Desrosiers-Grégoire & Gabriel A. Devenyi & Joanes Grandjean & M. Mallar Chakravarty, 2024. "A standardized image processing and data quality platform for rodent fMRI," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Peter Robinson, 2007. "On Discrete Sampling Of Time-Varyingcontinuous-Time Systems," STICERD - Econometrics Paper Series 520, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Robinson, Peter, 2007. "On discrete sampling of time-varying continuous-time systems," LSE Research Online Documents on Economics 6795, London School of Economics and Political Science, LSE Library.
    21. Peter M Robinson, 2009. "Correlation Testing in Time Series, SpatialandCross-Sectional Data," STICERD - Econometrics Paper Series 530, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    22. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Análisis espectral; series temporales no equiespaciadas temporalmente; periodograma de Lomb - Scargle; transformada de Lomb-Scargle Fourier; frecuencia de Nyquist; ruido rojo;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inp:inpana:v:8:y:2014:i:2:p:7-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.numericaiid.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.