IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i4p788-811.html
   My bibliography  Save this article

Operating Policies in Robotic Compact Storage and Retrieval Systems

Author

Listed:
  • Bipan Zou

    (School of Business Administration, Zhongnan University of Economics and Law, 430073 Wuhan, China)

  • René De Koster

    (Rotterdam School of Management, Erasmus University, 3000 DR Rotterdam, Netherlands)

  • Xianhao Xu

    (School of Management, Huazhong University of Science and Technology, 430074 Wuhan, China)

Abstract

Robotic compact storage and retrieval systems (RCSRS) have seen many implementations over the last few years. In such a system, the inventory items are stored in bins, organized in a grid. In each cell of the grid, a certain number of bins are stored on top of each other. Robots with transport and lifting capabilities move on the grid roof to transport bins between manual workstations and storage stacks. We estimate performance and evaluate storage policies of RCSRS, considering both dedicated and shared storage policies coupled with random and zoned storage stacks. Semi-open queuing networks (SOQNs) are built to estimate the system performance, which can handle both immediate and delayed reshuffling processes. We approximate the models by reduced SOQNs with two load-dependent service nodes and use the matrix-geometric method to solve them. Both simulations and a real case are used to validate the analytical models. Assuming a given number of stored products, our models can be used to optimize not only the length-to-width ratio of the system but also the stack height, depending on the storage strategy used. For a given inventory and optimal system configuration, we demonstrate that the dedicated storage policy outperforms the shared storage policy when the objective is to minimize dual command throughput time. However, from a cost perspective, with a maximum dual command throughput time as a constraint, we show that shared storage substantially outperforms dedicated storage. The annualized costs of dedicated storage are up to twice as large as those of shared storage, as a result of the larger number of storage positions required by dedicated storage and the relatively lower filling degree of storage stacks.

Suggested Citation

  • Bipan Zou & René De Koster & Xianhao Xu, 2018. "Operating Policies in Robotic Compact Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 52(4), pages 788-811, August.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:788-811
    DOI: 10.1287/trsc.2017.0786
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0786
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Jia & Sunderesh S. Heragu, 2009. "Solving Semi-Open Queuing Networks," Operations Research, INFORMS, vol. 57(2), pages 391-401, April.
    2. Nima Zaerpour & Yugang Yu & René B.M. Koster, 2015. "Storing Fresh Produce for Fast Retrieval in an Automated Compact Cross-Dock System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1266-1284, August.
    3. Roy, Debjit & Krishnamurthy, Ananth & Heragu, Sunderesh & Malmborg, Charles, 2015. "Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 72-87.
    4. Ronald Buitenhek & Geert‐Jan van Houtum & Henk Zijm, 2000. "AMVA‐based solution procedures for open queueing networks with population constraints," Annals of Operations Research, Springer, vol. 93(1), pages 15-40, January.
    5. Yugang Yu & René B.M. Koster & Xiaolong Guo, 2015. "Class-Based Storage with a Finite Number of Items: Using More Classes is not Always Better," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1235-1247, August.
    6. Fukunari, Miki & Malmborg, Charles J., 2009. "A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 193(1), pages 152-167, February.
    7. Iris F. A. Vis & Hector J. Carlo, 2010. "Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal," Transportation Science, INFORMS, vol. 44(2), pages 169-182, May.
    8. Nima Zaerpour & Yugang Yu & René de Koster, 2017. "Small is Beautiful: A Framework for Evaluating and Optimizing Live-Cube Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 34-51, February.
    9. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    10. Peng Yang & Lixin Miao & Zhaojie Xue & Lei Qin, 2015. "Optimal storage rack design for a multi-deep compact AS/RS considering the acceleration/deceleration of the storage and retrieval machine," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 929-943, February.
    11. Jingjing Hao & Yugang Yu & Linda L. Zhang, 2015. "Optimal design of a 3D compact storage system with the I/O port at the lower mid-point of the storage rack," International Journal of Production Research, Taylor & Francis Journals, vol. 53(17), pages 5153-5173, September.
    12. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2012. "Performance analysis and design trade-offs in warehouses with autonomous vehicle technology," IISE Transactions, Taylor & Francis Journals, vol. 44(12), pages 1045-1060.
    13. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-02313400, HAL.
    14. Bipan Zou & Yeming Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," Post-Print hal-02312005, HAL.
    15. Elena Tappia & Debjit Roy & René de Koster & Marco Melacini, 2017. "Modeling, Analysis, and Design Insights for Shuttle-Based Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 269-295, February.
    16. Zou, Bipan & Xu, Xianhao & (Yale) Gong, Yeming & De Koster, René, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," European Journal of Operational Research, Elsevier, vol. 254(1), pages 51-67.
    17. Amir Hossein Gharehgozli & Yugang Yu & Xiandong Zhang & René de Koster, 2017. "Polynomial Time Algorithms to Minimize Total Travel Time in a Two-Depot Automated Storage/Retrieval System," Transportation Science, INFORMS, vol. 51(1), pages 19-33, February.
    18. Xiao Cai & Sunderesh S. Heragu & Yang Liu, 2014. "Modeling and evaluating the AVS/RS with tier-to-tier vehicles using a semi-open queueing network," IISE Transactions, Taylor & Francis Journals, vol. 46(9), pages 905-927, September.
    19. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-01892897, HAL.
    20. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    21. Stephen C. Graves & Warren H. Hausman & Leroy B. Schwarz, 1977. "Storage-Retrieval Interleaving in Automatic Warehousing Systems," Management Science, INFORMS, vol. 23(9), pages 935-945, May.
    22. Tone Lerher, 2016. "Travel time model for double-deep shuttle-based storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2519-2540, May.
    23. Kevin R. Gue & Byung Soo Kim, 2007. "Puzzle‐based storage systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 556-567, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    4. Xu, Xianhao & Chen, Yuerong & Zou, Bipan & Gong, Yeming, 2022. "Assignment of parcels to loading stations in robotic sorting systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Zheng Wang & Jiuh‐Biing Sheu & Chung‐Piaw Teo & Guiqin Xue, 2022. "Robot Scheduling for Mobile‐Rack Warehouses: Human–Robot Coordinated Order Picking Systems," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 98-116, January.
    6. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    7. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    2. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    3. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    4. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    5. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    6. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    7. Zou, B. & de Koster, M.B.M. & Xu, X., 2016. "Evaluating dedicated and shared storage policies in robot-based compact storage and retrieval systems," ERIM Report Series Research in Management ERS-2016-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    9. Dong, Wenquan & Jin, Mingzhou, 2024. "Automated storage and retrieval system design with variant lane depths," European Journal of Operational Research, Elsevier, vol. 314(2), pages 630-646.
    10. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    12. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    13. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    14. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    15. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    16. Yanyan Wang & Jinning Qin & Shandong Mou & Ke Huang & Xiaofeng Zhao, 2023. "DSS approach for sustainable system design of shuttle-based storage and retrieval systems," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 698-726, September.
    17. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.
    18. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    19. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    20. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:788-811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.