IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v189y2024ics1366554524002734.html
   My bibliography  Save this article

Travel time models for compact automated parking systems using two I/O points and the point of service completion dwell point policy

Author

Listed:
  • Wu, Guangmei
  • Wang, Xiruo
  • Zou, Bipan

Abstract

Modern cities encounter challenges related to parking scarcity arising from limited land space and congested traffic. Compact automated parking systems (CAPS) have gained increasing popularity in addressing this issue. These systems store cars in a multi-tier configuration and use a crane with a shuttle at the centre of the system to transport cars. The system throughput primarily relies on the configuration design and the control mechanisms of the crane and shuttle, which are established during the design phase and daily operations, respectively. Our study focuses on the dwell point, where the shuttle remains after completing a transaction, and the input/output (I/O) point. In contrast to existing studies, this paper considers two I/O points and the point-of-service-completion (POSC) dwell point policy. In this configuration, we develop both single-command (SC) and dual-command (DC) travel time models for CAPS with single and dual shuttles, respectively. Simulation is carried out to verify the accuracy of these models. We evaluate the effectiveness of the proposed policies and optimise the shape of CAPS. In addition, we numerically compare the retrieval time of single and dual shuttle systems, considering SC and DC. Our results show a critical ratio of shuttle travelling speed to the crane rotating speed exists. Beyond this ratio, the performance of single shuttle CAPS is better than that of dual shuttle CAPS, and the DC outperforming the SC in single shuttle CAPS. The results also indicate that DC always performs better in dual shuttle CAPS. Moreover, we compare our operating policies with those from previous studies and investigate the cost performance of our system. The results show the superiority of our policies and suggest their suitability for addressing diverse customer demands. Finally, we calculate the investment cost of single shuttle CAPS, and our system has a lower investment cost than traditional CAPS.

Suggested Citation

  • Wu, Guangmei & Wang, Xiruo & Zou, Bipan, 2024. "Travel time models for compact automated parking systems using two I/O points and the point of service completion dwell point policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002734
    DOI: 10.1016/j.tre.2024.103682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nima Zaerpour & Yugang Yu & René B.M. Koster, 2015. "Storing Fresh Produce for Fast Retrieval in an Automated Compact Cross-Dock System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1266-1284, August.
    2. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    3. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    4. Qi Chen & Zhengguo Wang & Yeming Gong & René de Koster & Wanying Amanda Chen, 2021. "Performance evaluation of compact automated parking systems with mobile application and customer service priority," Post-Print hal-03188188, HAL.
    5. Roy, Debjit & Krishnamurthy, Ananth & Heragu, Sunderesh & Malmborg, Charles, 2015. "Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 72-87.
    6. Fukunari, Miki & Malmborg, Charles J., 2009. "A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 193(1), pages 152-167, February.
    7. Yingying Wu & Chen Zhou & Wenkai Ma & Xiang T. R. Kong, 2020. "Modelling and design for a shuttle-based storage and retrieval system," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 4808-4828, July.
    8. Nima Zaerpour & Amir Gharehgozli & René De Koster, 2019. "Vertical Expansion: A Solution for Future Container Terminals," Transportation Science, INFORMS, vol. 53(5), pages 1235-1251, September.
    9. Li Zhang & Ananth Krishnamurthy & Charles J. Malmborg & Sunderesh S. Heragu, 2009. "Variance-based approximations of transaction waiting times in autonomous vehicle storage and retrieval systems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 3(2), pages 146-169.
    10. He, Jing & Liu, Xinglu & Duan, Qiyao & Chan, Wai Kin (Victor) & Qi, Mingyao, 2023. "Reinforcement learning for multi-item retrieval in the puzzle-based storage system," European Journal of Operational Research, Elsevier, vol. 305(2), pages 820-837.
    11. Bukchin, Yossi & Raviv, Tal, 2022. "A comprehensive toolbox for load retrieval in puzzle-based storage systems with simultaneous movements," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 348-373.
    12. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    13. Jing Zhang & Zi-You Gao & Yu-Gang Yu & Tao Wang, 2021. "Travel time model for a tower-based automated parking system," International Journal of Production Research, Taylor & Francis Journals, vol. 59(18), pages 5422-5437, September.
    14. Nima Zaerpour & Yugang Yu & René B.M. de Koster, 2017. "Optimal two-class-based storage in a live-cube compact storage system," IISE Transactions, Taylor & Francis Journals, vol. 49(7), pages 653-668, July.
    15. Qi Chen & Zhengguo Wang & Yeming Gong & René B. M. De Koster & Wanying Chen, 2021. "Performance evaluation of compact automated parking systems with mobile application and customer service priority," International Journal of Production Research, Taylor & Francis Journals, vol. 59(10), pages 2926-2959, May.
    16. Teh Khai Jen & Rong Wang & Peng Yang, 2024. "Determining the I/O point policy in a robotic live-cube compact storage system," International Journal of Production Research, Taylor & Francis Journals, vol. 62(19), pages 7056-7072, October.
    17. Tone Lerher, 2018. "Aisle changing shuttle carriers in autonomous vehicle storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(11), pages 3859-3879, June.
    18. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2012. "Performance analysis and design trade-offs in warehouses with autonomous vehicle technology," IISE Transactions, Taylor & Francis Journals, vol. 44(12), pages 1045-1060.
    19. Xianhao Xu & Xiaozhen Zhao & Bipan Zou & Yeming (Yale) Gong & Hongwei Wang, 2020. "Travel time models for a three-dimensional compact AS/RS considering different I/O point policies," International Journal of Production Research, Taylor & Francis Journals, vol. 58(18), pages 5432-5455, September.
    20. Zhuxi Chen & Xiaoping Li & Jatinder N.D. Gupta, 2015. "A bi-directional flow-rack automated storage and retrieval system for unit-load warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 53(14), pages 4176-4188, July.
    21. Elena Tappia & Debjit Roy & René de Koster & Marco Melacini, 2017. "Modeling, Analysis, and Design Insights for Shuttle-Based Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 269-295, February.
    22. Zou, Bipan & Xu, Xianhao & (Yale) Gong, Yeming & De Koster, René, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," European Journal of Operational Research, Elsevier, vol. 254(1), pages 51-67.
    23. Wu, Guangmei & Xu, Xianhao & Lu, Xinyuan, 2020. "Considering the influence of queue length on performance improvement for a new compact robotic automated parking system," International Journal of Information Management, Elsevier, vol. 50(C), pages 487-497.
    24. Xiao Cai & Sunderesh S. Heragu & Yang Liu, 2014. "Modeling and evaluating the AVS/RS with tier-to-tier vehicles using a semi-open queueing network," IISE Transactions, Taylor & Francis Journals, vol. 46(9), pages 905-927, September.
    25. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    26. Tone Lerher, 2016. "Travel time model for double-deep shuttle-based storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2519-2540, May.
    27. Jakob Marolt & Simona Šinko & Tone Lerher, 2023. "Model of a multiple-deep automated vehicles storage and retrieval system following the combination of Depth-First storage and Depth-First relocation strategies," International Journal of Production Research, Taylor & Francis Journals, vol. 61(15), pages 4991-5008, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    2. Bipan Zou & René De Koster & Xianhao Xu, 2018. "Operating Policies in Robotic Compact Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 52(4), pages 788-811, August.
    3. Dong, Wenquan & Jin, Mingzhou, 2024. "Automated storage and retrieval system design with variant lane depths," European Journal of Operational Research, Elsevier, vol. 314(2), pages 630-646.
    4. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    5. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    6. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    7. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    8. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    9. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    10. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    12. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-01892897, HAL.
    13. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    14. Martin Epp & Simon Wiedemann & Kai Furmans, 2017. "A discrete-time queueing network approach to performance evaluation of autonomous vehicle storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 960-978, February.
    15. Yi Li & Zhiyang Li, 2022. "Shuttle-Based Storage and Retrieval System: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    16. Azadeh, K. & Roy, D. & de Koster, M.B.M., 2016. "Vertical or Horizontal Transport? - Comparison of robotic storage and retrieval systems," ERIM Report Series Research in Management ERS-2016-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Amjath, Mohamed & Kerbache, Laoucine & Smith, James MacGregor & Elomri, Adel, 2022. "Fleet sizing of trucks for an inter-facility material handling system using closed queueing networks," Operations Research Perspectives, Elsevier, vol. 9(C).
    18. Elena Tappia & Debjit Roy & René de Koster & Marco Melacini, 2017. "Modeling, Analysis, and Design Insights for Shuttle-Based Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 269-295, February.
    19. Liu, Tian & Gong, Yeming & De Koster, René B.M., 2018. "Travel time models for split-platform automated storage and retrieval systems," International Journal of Production Economics, Elsevier, vol. 197(C), pages 197-214.
    20. Yanyan Wang & Jinning Qin & Shandong Mou & Ke Huang & Xiaofeng Zhao, 2023. "DSS approach for sustainable system design of shuttle-based storage and retrieval systems," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 698-726, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.