IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v47y2013i3p439-454.html
   My bibliography  Save this article

Stochastic Preplanned Household Activity Pattern Problem with Uncertain Activity Participation (SHAPP)

Author

Listed:
  • Li Ping Gan

    (Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Irvine, Irvine, California 92697)

  • Will Recker

    (Department of Civil and Environmental Engineering, Institute of Transportation Studies, University of California, Irvine, Irvine, California 92697)

Abstract

The so-called activity-based approach to analysis of human interaction with the social and physical environments dates back to the original time-space geography works of Hägerstrand and his colleagues at the Lund School in 1970. Despite their obvious theoretical attractiveness, activity-based approaches to understanding and predicting travel behavior have suffered from the absence of an analytical framework that unifies the complex interactions among the resource allocation decisions made by households in conducting their daily affairs outside the home while preserving the utility-maximizing principles presumed to guide such decisions. In this paper, we develop a computationally tractable system, based on an extension and modification of some rather well-known network-based formulations in operations research, to model human dynamics in uncertain environments. The research builds on the mathematical programming formulation of the household activity pattern problem by embedding stochastic elements in the planned household activity schedule decision process that capture the uncertainty of the need for rescheduling.

Suggested Citation

  • Li Ping Gan & Will Recker, 2013. "Stochastic Preplanned Household Activity Pattern Problem with Uncertain Activity Participation (SHAPP)," Transportation Science, INFORMS, vol. 47(3), pages 439-454, August.
  • Handle: RePEc:inm:ortrsc:v:47:y:2013:i:3:p:439-454
    DOI: 10.1287/trsc.1120.0426
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1120.0426
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1120.0426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. Gan, Li Ping & Recker, Will, 2008. "A mathematical programming formulation of the household activity rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 571-606, July.
    3. Sean Doherty & Eric Miller, 2000. "A computerized household activity scheduling survey," Transportation, Springer, vol. 27(1), pages 75-97, February.
    4. Auld, Joshua & Mohammadian, Abolfazl (Kouros) & Doherty, Sean T., 2009. "Modeling activity conflict resolution strategies using scheduling process data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 386-400, May.
    5. Mohammadian, Abolfazl & Doherty, Sean T., 2006. "Modeling activity scheduling time horizon: Duration of time between planning and execution of pre-planned activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 475-490, July.
    6. Michel Gendreau & Gilbert Laporte & René Séguin, 1995. "An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers," Transportation Science, INFORMS, vol. 29(2), pages 143-155, May.
    7. Patrick Jaillet, 1988. "A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited," Operations Research, INFORMS, vol. 36(6), pages 929-936, December.
    8. Gilbert Laporte & François V. Louveaux & Hélène Mercure, 1994. "A Priori Optimization of the Probabilistic Traveling Salesman Problem," Operations Research, INFORMS, vol. 42(3), pages 543-549, June.
    9. Recker, W. W. & Chen, C. & McNally, M. G., 2001. "Measuring the impact of efficient household travel decisions on potential travel time savings and accessibility gains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 339-369, May.
    10. Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
    11. S. Y. Teng & H. L. Ong & H. C. Huang, 2004. "An Integer L-Shaped Algorithm For Time-Constrained Traveling Salesman Problem With Stochastic Travel And Service Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 241-257.
    12. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    13. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    2. Xu, Zhiheng & Kang, Jee Eun & Chen, Roger, 2018. "A random utility based estimation framework for the household activity pattern problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 321-337.
    3. Allahviranloo, Mahdieh & Chow, Joseph Y.J. & Recker, Will W., 2014. "Selective vehicle routing problems under uncertainty without recourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 68-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    2. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    3. Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2018. "The Dynamic Dispatch Waves Problem for same-day delivery," European Journal of Operational Research, Elsevier, vol. 271(2), pages 519-534.
    4. Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2020. "Request acceptance in same-day delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    5. Allahviranloo, Mahdieh & Chow, Joseph Y.J. & Recker, Will W., 2014. "Selective vehicle routing problems under uncertainty without recourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 68-88.
    6. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    7. Mathias A. Klapp & Alan L. Erera & Alejandro Toriello, 2018. "The One-Dimensional Dynamic Dispatch Waves Problem," Transportation Science, INFORMS, vol. 52(2), pages 402-415, March.
    8. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Albareda-Sambola, Maria & Fernandez, Elena & Laporte, Gilbert, 2007. "Heuristic and lower bound for a stochastic location-routing problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 940-955, June.
    10. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    11. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.
    12. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    13. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    14. Florent Hernandez & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A local branching matheuristic for the multi-vehicle routing problem with stochastic demands," Journal of Heuristics, Springer, vol. 25(2), pages 215-245, April.
    15. Anirudh Subramanyam & Frank Mufalli & José M. Lí?nez-Aguirre & Jose M. Pinto & Chrysanthos E. Gounaris, 2021. "Robust Multiperiod Vehicle Routing Under Customer Order Uncertainty," Operations Research, INFORMS, vol. 69(1), pages 30-60, January.
    16. Yossiri Adulyasak & Patrick Jaillet, 2016. "Models and Algorithms for Stochastic and Robust Vehicle Routing with Deadlines," Transportation Science, INFORMS, vol. 50(2), pages 608-626, May.
    17. Langerudi, Mehran Fasihozaman & Javanmardi, Mahmoud & Shabanpour, Ramin & Rashidi, Taha Hossein & Mohammadian, Abolfazl, 2017. "Incorporating in-home activities in ADAPTS activity-based framework: A sequential conditional probability approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 48-60.
    18. Si Chen & Bruce Golden & Richard Wong & Hongsheng Zhong, 2009. "Arc-Routing Models for Small-Package Local Routing," Transportation Science, INFORMS, vol. 43(1), pages 43-55, February.
    19. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    20. Demir, Emrah & Burgholzer, Wolfgang & Hrušovský, Martin & Arıkan, Emel & Jammernegg, Werner & Woensel, Tom Van, 2016. "A green intermodal service network design problem with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 789-807.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:47:y:2013:i:3:p:439-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.