IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v46y2012i1p90-108.html
   My bibliography  Save this article

A Randomized Linear Programming Method for Network Revenue Management with Product-Specific No-Shows

Author

Listed:
  • Sumit Kunnumkal

    (Indian School of Business, Gachibowli, Hyderabad 500032, India)

  • Kalyan Talluri

    (ICREA and Universitat Pompeu Fabra, 08005 Barcelona, Spain)

  • Huseyin Topaloglu

    (School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853)

Abstract

Revenue management practices often include overbooking capacity to account for customers who make reservations but do not show up. In this paper, we consider the network revenue management problem with no-shows and overbooking, where the show-up probabilities are specific to each product. No-show rates differ significantly by product (for instance, each itinerary and fare combination for an airline) as sale restrictions and the demand characteristics vary by product. However, models that consider no-show rates by each individual product are difficult to handle because the state-space in dynamic programming formulations (or the variable space in approximations) increases significantly. In this paper, we propose a randomized linear program to jointly make the capacity control and overbooking decisions with product-specific no-shows. We establish that our formulation gives an upper bound on the optimal expected total profit, and our upper bound is tighter than a deterministic linear programming upper bound that appears in the existing literature. Furthermore, we show that our upper bound is asymptotically tight in a regime where the leg capacities and the expected demand is scaled linearly with the same rate. We also describe how the randomized linear program can be used to obtain a bid price control policy. Computational experiments indicate that our approach is quite fast, is able to scale to industrial problems, and can provide significant improvements over standard benchmarks.

Suggested Citation

  • Sumit Kunnumkal & Kalyan Talluri & Huseyin Topaloglu, 2012. "A Randomized Linear Programming Method for Network Revenue Management with Product-Specific No-Shows," Transportation Science, INFORMS, vol. 46(1), pages 90-108, February.
  • Handle: RePEc:inm:ortrsc:v:46:y:2012:i:1:p:90-108
    DOI: 10.1287/trsc.1110.0386
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1110.0386
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1110.0386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Ioana Popescu, 2003. "Revenue Management in a Dynamic Network Environment," Transportation Science, INFORMS, vol. 37(3), pages 257-277, August.
    2. Alexander Erdelyi & Huseyin Topaloglu, 2010. "A Dynamic Programming Decomposition Method for Making Overbooking Decisions Over an Airline Network," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 443-456, August.
    3. Kalyan Talluri, 2008. "On bounds for network revenue management," Economics Working Papers 1066, Department of Economics and Business, Universitat Pompeu Fabra, revised May 2009.
    4. Sumit Kunnumkal & Huseyin Topaloglu, 2011. "A stochastic approximation algorithm to compute bid prices for joint capacity allocation and overbooking over an airline network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(4), pages 323-343, June.
    5. Kalyan Talluri & Garrett van Ryzin, 1999. "A Randomized Linear Programming Method for Computing Network Bid Prices," Transportation Science, INFORMS, vol. 33(2), pages 207-216, May.
    6. Kalyan Talluri & Garrett van Ryzin, 1998. "An Analysis of Bid-Price Controls for Network Revenue Management," Management Science, INFORMS, vol. 44(11-Part-1), pages 1577-1593, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    2. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
    3. Sierag, D.D. & Koole, G.M. & van der Mei, R.D. & van der Rest, J.I. & Zwart, B., 2015. "Revenue management under customer choice behaviour with cancellations and overbooking," European Journal of Operational Research, Elsevier, vol. 246(1), pages 170-185.
    4. Lan, Yingjie & Ball, Michael O. & Karaesmen, Itir Z. & Zhang, Jean X. & Liu, Gloria X., 2015. "Analysis of seat allocation and overbooking decisions with hybrid information," European Journal of Operational Research, Elsevier, vol. 240(2), pages 493-504.
    5. Nurşen Aydın & Ş. İlker Birbil & Hüseyin Topaloğlu, 2017. "Delayed Purchase Options in Single-Leg Revenue Management," Transportation Science, INFORMS, vol. 51(4), pages 1031-1045, November.
    6. Aydin, N. & Birbil, S.I., 2018. "Decomposition methods for dynamic room allocation in hotel revenue management," European Journal of Operational Research, Elsevier, vol. 271(1), pages 179-192.
    7. Ming Xu & Yan Jiao & Xiaoming Li & Qingfeng Cao & Xiaoyang Wang, 2015. "A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-18, July.
    8. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    9. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    2. Ş. İlker Birbil & J. B. G. Frenk & Joaquim A. S. Gromicho & Shuzhong Zhang, 2014. "A Network Airline Revenue Management Framework Based on Decomposition by Origins and Destinations," Transportation Science, INFORMS, vol. 48(3), pages 313-333, August.
    3. Moussawi-Haidar, Lama & Nasr, Walid & Jalloul, Maya, 2021. "Standardized cargo network revenue management with dual channels under stochastic and time-dependent demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 275-291.
    4. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    5. Georgia Perakis & Guillaume Roels, 2010. "Robust Controls for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 56-76, November.
    6. L. F. Escudero & J. F. Monge & D. Romero Morales & J. Wang, 2013. "Expected Future Value Decomposition Based Bid Price Generation for Large-Scale Network Revenue Management," Transportation Science, INFORMS, vol. 47(2), pages 181-197, May.
    7. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
    8. Huseyin Topaloglu & S. Ilker Birbil & J. B. G. Frenk & Nilay Noyan, 2012. "Tractable Open Loop Policies for Joint Overbooking and Capacity Control Over a Single Flight Leg with Multiple Fare Classes," Transportation Science, INFORMS, vol. 46(4), pages 460-481, November.
    9. Huseyin Topaloglu, 2009. "Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 637-649, June.
    10. Pak, K. & Dekker, R. & Kindervater, G.A.P., 2003. "Airline Revenue Management with Shifting Capacity," Econometric Institute Research Papers ERS-2003-091-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Chiang, David Ming-Huang & Wu, Andy Wei-Di, 2011. "Discrete-order admission ATP model with joint effect of margin and order size in a MTO environment," International Journal of Production Economics, Elsevier, vol. 133(2), pages 761-775, October.
    12. Topaloglu, Huseyin, 2009. "On the asymptotic optimality of the randomized linear program for network revenue management," European Journal of Operational Research, Elsevier, vol. 197(3), pages 884-896, September.
    13. Yuri Levin & Mikhail Nediak & Huseyin Topaloglu, 2012. "Cargo Capacity Management with Allotments and Spot Market Demand," Operations Research, INFORMS, vol. 60(2), pages 351-365, April.
    14. Meng, Qiang & Zhao, Hui & Wang, Yadong, 2019. "Revenue management for container liner shipping services: Critical review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 280-292.
    15. Aydin, N. & Birbil, S.I., 2018. "Decomposition methods for dynamic room allocation in hotel revenue management," European Journal of Operational Research, Elsevier, vol. 271(1), pages 179-192.
    16. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    17. Huseyin Topaloglu, 2008. "A Stochastic Approximation Method to Compute Bid Prices in Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 596-610, November.
    18. Sebastian Koch & Jochen Gönsch & Claudius Steinhardt, 2017. "Dynamic Programming Decomposition for Choice-Based Revenue Management with Flexible Products," Transportation Science, INFORMS, vol. 51(4), pages 1046-1062, November.
    19. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    20. William L. Cooper & Tito Homem-de-Mello, 2007. "Some Decomposition Methods for Revenue Management," Transportation Science, INFORMS, vol. 41(3), pages 332-353, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:46:y:2012:i:1:p:90-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.