IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v28y1994i3p182-192.html
   My bibliography  Save this article

Network Equilibrium Models with Combined Modes

Author

Listed:
  • Enrique Fernandez

    (Pontificia Universidad Católica de Chile, Departamento de Ingeniería de Transporte, Casilla 6177, Santiago, Chile)

  • Joaquin de Cea

    (Pontificia Universidad Católica de Chile, Departamento de Ingeniería de Transporte, Casilla 6177, Santiago, Chile)

  • Michael Florian

    (Centre de Recherche sur les Transports, C.P. 6128, Succ. A, Montreal, H3C 3J7, Canada)

  • Enrique Cabrera

    (Comisión de Planificación de Inversiones de Transporte, Ahumada 48, Santiago, Chile)

Abstract

Many trips in urban areas are taken by using more than one mode, such as the so called “kiss'n ride” or “park'n ride” trips; the first part of the trip is taken by the private care and then completed by taking one or more transit modes. We present in this paper several approaches to formulating network equilibrium models with combined modes. One of these approaches results in a new network equilibrium model, where the combined mode is considered as a distinct alternative in a demand model, and the network flows are suitably modelled on different modal subnetworks. The mathematical structure of the model is analysed and solution algorithms are outlined.

Suggested Citation

  • Enrique Fernandez & Joaquin de Cea & Michael Florian & Enrique Cabrera, 1994. "Network Equilibrium Models with Combined Modes," Transportation Science, INFORMS, vol. 28(3), pages 182-192, August.
  • Handle: RePEc:inm:ortrsc:v:28:y:1994:i:3:p:182-192
    DOI: 10.1287/trsc.28.3.182
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.28.3.182
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.28.3.182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdouch, Younes & Florian, Michael & Hearn, Donald W. & Lawphongpanich, Siriphong, 2007. "Congestion pricing for multi-modal transportation systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 275-291, March.
    2. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    3. Meruza Kubentayeva & Demyan Yarmoshik & Mikhail Persiianov & Alexey Kroshnin & Ekaterina Kotliarova & Nazarii Tupitsa & Dmitry Pasechnyuk & Alexander Gasnikov & Vladimir Shvetsov & Leonid Baryshev & A, 2024. "Primal-dual gradient methods for searching network equilibria in combined models with nested choice structure and capacity constraints," Computational Management Science, Springer, vol. 21(1), pages 1-33, June.
    4. Louis Grange & Enrique Fernández & Joaquín Cea & Magdalena Irrazábal, 2010. "Combined Model Calibration and Spatial Aggregation," Networks and Spatial Economics, Springer, vol. 10(4), pages 551-578, December.
    5. Seungkyu Ryu, 2021. "Mode Choice Change under Environmental Constraints in the Combined Modal Split and Traffic Assignment Model," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    6. Kenetsu Uchida & Agachai Sumalee & David Watling & Richard Connors, 2007. "A Study on Network Design Problems for Multi-modal Networks by Probit-based Stochastic User Equilibrium," Networks and Spatial Economics, Springer, vol. 7(3), pages 213-240, September.
    7. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    8. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.
    9. Du, Bo & Wang, David Z.W., 2014. "Continuum modeling of park-and-ride services considering travel time reliability and heterogeneous commuters – A linear complementarity system approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 58-81.
    10. Liu, Tian-Liang & Huang, Hai-Jun & Yang, Hai & Zhang, Xiaoning, 2009. "Continuum modeling of park-and-ride services in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 692-707, July.
    11. Tao Zhang & Yang Yang & Gang Cheng & Minjie Jin, 2020. "A Practical Traffic Assignment Model for Multimodal Transport System Considering Low-Mobility Groups," Mathematics, MDPI, vol. 8(3), pages 1-19, March.
    12. Fernández L., J. Enrique & de Cea Ch., Joaquín & O., Alexandra Soto, 2003. "A multi-modal supply-demand equilibrium model for predicting intercity freight flows," Transportation Research Part B: Methodological, Elsevier, vol. 37(7), pages 615-640, August.
    13. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    14. Maurizio Bielli & Pasquale Carotenuto, 1998. "A new approach for transport network design and optimization," ERSA conference papers ersa98p414, European Regional Science Association.
    15. Xinyuan Chen & Ruyang Yin & Qinhe An & Yuan Zhang, 2021. "Modeling a Distance-Based Preferential Fare Scheme for Park-and-Ride Services in a Multimodal Transport Network," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    16. José Luis Espinosa-Aranda & Ricardo García-Ródenas & María Luz López-García & Eusebio Angulo, 2018. "Constrained nested logit model: formulation and estimation," Transportation, Springer, vol. 45(5), pages 1523-1557, September.
    17. Lozano, Angélica & Storchi, Giovanni, 2002. "Shortest viable hyperpath in multimodal networks," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 853-874, December.
    18. Joaquín De Cea & J. Enrique Fernández & Valérie Dekock & Alexandra Soto, 2004. "Solving network equilibrium problems on multimodal urban transportation networks with multiple user classes," Transport Reviews, Taylor & Francis Journals, vol. 25(3), pages 293-317, January.
    19. Liu, Zhiyuan & Chen, Xinyuan & Meng, Qiang & Kim, Inhi, 2018. "Remote park-and-ride network equilibrium model and its applications," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 37-62.
    20. Bielli, Maurizio & Boulmakoul, Azedine & Mouncif, Hicham, 2006. "Object modeling and path computation for multimodal travel systems," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1705-1730, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:28:y:1994:i:3:p:182-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.