IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v27y1993i2p90-101.html
   My bibliography  Save this article

Dual-Ascent Procedures for Multicommodity Location-Allocation Problems with Balancing Requirements

Author

Listed:
  • Teodor Gabriel Crainic

    (Département des Sciences Administratives, Université du Québec à Montréal, Montréal, Canada, and Centre de Recherche sur les Transports, Université de Montréal, Montréal, Canada)

  • Louis Delorme

    (V.P. Recherche, I.R.E.Q., Hydro Québec, Varennes, Canada)

Abstract

The multicommodity location-allocation problem with balancing requirements is related to one of the major logistics issues faced by distribution and transportation firms: the management of the fleet of vehicles over a medium to long-term planning horizon. We present a dual-ascent approach for this formulation which may be used either to obtain a good heuristic solution, or to compare sharp bounds in a branch-and-bound scheme. We present and compare two variants of this approach, and analyze their performances both on a large number of randomly generated problems and on a large-scale application to the strategic/tactical planning of the land operations of an international maritime container shipping firm. Our results demonstrate that a dual-ascent approach is highly effective in this context.

Suggested Citation

  • Teodor Gabriel Crainic & Louis Delorme, 1993. "Dual-Ascent Procedures for Multicommodity Location-Allocation Problems with Balancing Requirements," Transportation Science, INFORMS, vol. 27(2), pages 90-101, May.
  • Handle: RePEc:inm:ortrsc:v:27:y:1993:i:2:p:90-101
    DOI: 10.1287/trsc.27.2.90
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.27.2.90
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.27.2.90?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hall, Randolph W., 1999. "Stochastic freight flow patterns: implications for fleet optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 449-465, August.
    2. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    3. Yi Zhao & Qingwan Xue & Xi Zhang, 2018. "Stochastic Empty Container Repositioning Problem with CO 2 Emission Considerations for an Intermodal Transportation System," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    4. Li, Jing-An & Leung, Stephen C.H. & Wu, Yue & Liu, Ke, 2007. "Allocation of empty containers between multi-ports," European Journal of Operational Research, Elsevier, vol. 182(1), pages 400-412, October.
    5. Najafi, Mehdi & Zolfagharinia, Hossein, 2021. "Pricing and quality setting strategy in maritime transportation: Considering empty repositioning and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 240(C).
    6. Mercedes Landete & Alfredo Marín, 2009. "New facets for the two-stage uncapacitated facility location polytope," Computational Optimization and Applications, Springer, vol. 44(3), pages 487-519, December.
    7. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    8. Hinojosa, Y. & Puerto, J. & Fernandez, F. R., 2000. "A multiperiod two-echelon multicommodity capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 271-291, June.
    9. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    10. Moon, Ilkyeong & Do Ngoc, Anh-Dung & Konings, Rob, 2013. "Foldable and standard containers in empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 107-124.
    11. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    12. M-G Yoon & J Current, 2008. "The hub location and network design problem with fixed and variable arc costs: formulation and dual-based solution heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 80-89, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:27:y:1993:i:2:p:90-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.