IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i3p727-744.html
   My bibliography  Save this article

Robust Partitioning for Stochastic Multivehicle Routing

Author

Listed:
  • John Gunnar Carlsson

    (Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455)

  • Erick Delage

    (Department of Management Sciences, HEC Montréal, Montréal, Quebec H3T 2A7, Canada)

Abstract

The problem of coordinating a fleet of vehicles so that all demand points on a territory are serviced and the workload is most evenly distributed among the vehicles is a hard one. For this reason, it is often an effective strategy to first divide the service region and impose that each vehicle is only responsible for its own subregion. This heuristic also has the practical advantage that over time, drivers become more effective at serving their territory and customers. In this paper, we assume that client locations are unknown at the time of partitioning the territory and that each of them will be drawn identically and independently according to a distribution that is actually also unknown . In practice, it might be impossible to identify precisely the distribution if, for instance, information about the demand is limited to historical data. Our approach suggests partitioning the region with respect to the worst-case distribution that satisfies first- and second-order moments information. As a side product, our analysis constructs for each subregion a closed-form expression for the worst-case density function, thus providing useful insights about what affects the completion time most heavily. The successful implementation of our approach relies on two branch-and-bound algorithms: whereas the first finds a globally optimal partition of a convex polygon into two convex subregions, the second finds a local optimum for the harder n -partitioning problem. Finally, simulations of a parcel delivery problem will demonstrate that our data-driven approach makes better use of historical data as it becomes available.

Suggested Citation

  • John Gunnar Carlsson & Erick Delage, 2013. "Robust Partitioning for Stochastic Multivehicle Routing," Operations Research, INFORMS, vol. 61(3), pages 727-744, June.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:727-744
    DOI: 10.1287/opre.2013.1160
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1160
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris J. Bertsimas, 1992. "A Vehicle Routing Problem with Stochastic Demand," Operations Research, INFORMS, vol. 40(3), pages 574-585, June.
    2. Haugland, Dag & Ho, Sin C. & Laporte, Gilbert, 2007. "Designing delivery districts for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 180(3), pages 997-1010, August.
    3. Sapkota, S. & Kohl III, H.W. & Gilchrist, J. & McAuliffe, J. & Parks, B. & England, B. & Flood, T. & Sewell, C.M. & Perrotta, D. & Escobedo, M. & Stern, C.E. & Zane, D. & Nolte, K.B., 2006. "Unauthorized border crossing and migrant deaths: Arizona, New Mexico, and El Paso, Texas, 2002-2003," American Journal of Public Health, American Public Health Association, vol. 96(7), pages 1282-1287.
    4. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    5. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    6. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2011. "The Price of Fairness," Operations Research, INFORMS, vol. 59(1), pages 17-31, February.
    7. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    2. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    3. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    4. Ouyang, Zhiyuan & Leung, Eric K.H. & Huang, George Q., 2023. "Community logistics and dynamic community partitioning: A new approach for solving e-commerce last mile delivery," European Journal of Operational Research, Elsevier, vol. 307(1), pages 140-156.
    5. Ali Yekkehkhany & Timothy Murray & Rakesh Nagi, 2021. "Stochastic Superiority Equilibrium in Game Theory," Decision Analysis, INFORMS, vol. 18(2), pages 153-168, June.
    6. Meng, Zhu & Zhu, Ning & Zhang, Guowei & Yang, Yuance & Liu, Zhaocai & Ke, Ginger Y., 2024. "Data-driven drone pre-positioning for traffic accident rapid assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    7. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
    8. Antonio Diglio & Stefan Nickel & Francisco Saldanha-da-Gama, 2020. "Towards a stochastic programming modeling framework for districting," Annals of Operations Research, Springer, vol. 292(1), pages 249-285, September.
    9. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    10. Yossiri Adulyasak & Patrick Jaillet, 2016. "Models and Algorithms for Stochastic and Robust Vehicle Routing with Deadlines," Transportation Science, INFORMS, vol. 50(2), pages 608-626, May.
    11. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    12. Ouyang, Zhiyuan & Leung, Eric Ka Ho & Huang, George Q., 2022. "Community logistics for dynamic vehicle dispatching: The effects of community departure “time” and “space”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    13. Karen Smilowitz, 2017. "Comments on: Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 440-442, October.
    14. Dinçer Konur & Joseph Geunes, 2019. "Integrated districting, fleet composition, and inventory planning for a multi-retailer distribution system," Annals of Operations Research, Springer, vol. 273(1), pages 527-559, February.
    15. Huang, Yixiao & Savelsbergh, Martin & Zhao, Lei, 2018. "Designing logistics systems for home delivery in densely populated urban areas," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 95-125.
    16. Carlsson, John Gunnar & Behroozi, Mehdi, 2017. "Worst-case demand distributions in vehicle routing," European Journal of Operational Research, Elsevier, vol. 256(2), pages 462-472.
    17. Tao, Jiawei & Dai, Hongyan & Chen, Weiwei & Jiang, Hai, 2023. "The value of personalized dispatch in O2O on-demand delivery services," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1022-1035.
    18. Zhou, Lin & Zhen, Lu & Baldacci, Roberto & Boschetti, Marco & Dai, Ying & Lim, Andrew, 2021. "A Heuristic Algorithm for solving a large-scale real-world territory design problem," Omega, Elsevier, vol. 103(C).
    19. Selin Damla Ahipaşaoğlu & Uğur Arıkan & Karthik Natarajan, 2019. "Distributionally Robust Markovian Traffic Equilibrium," Transportation Science, INFORMS, vol. 53(6), pages 1546-1562, November.
    20. Bender, Matthias & Kalcsics, Jörg & Meyer, Anne, 2020. "Districting for parcel delivery services – A two-Stage solution approach and a real-World case study," Omega, Elsevier, vol. 96(C).
    21. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).
    22. Yixiao Huang & Lei Zhao & Warren B. Powell & Yue Tong & Ilya O. Ryzhov, 2019. "Optimal Learning for Urban Delivery Fleet Allocation," Transportation Science, INFORMS, vol. 53(3), pages 623-641, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    2. Luo, Fengqiao & Mehrotra, Sanjay, 2019. "Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models," European Journal of Operational Research, Elsevier, vol. 278(1), pages 20-35.
    3. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    4. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    5. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    6. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    7. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    8. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    9. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.
    10. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    11. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    12. Ben-Tal, A. & den Hertog, D. & De Waegenaere, A.M.B. & Melenberg, B. & Rennen, G., 2011. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Other publications TiSEM 4d43dc51-86d9-4804-8563-9, Tilburg University, School of Economics and Management.
    13. Zhao, Kena & Ng, Tsan Sheng & Tan, Chin Hon & Pang, Chee Khiang, 2021. "An almost robust model for minimizing disruption exposures in supply systems," European Journal of Operational Research, Elsevier, vol. 295(2), pages 547-559.
    14. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    15. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    16. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    17. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    18. Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
    19. Benjamin Armbruster & Erick Delage, 2015. "Decision Making Under Uncertainty When Preference Information Is Incomplete," Management Science, INFORMS, vol. 61(1), pages 111-128, January.
    20. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:727-744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.