IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i6p1178-1182.html
   My bibliography  Save this article

Technical Note---Assessment of Disclosure Risk When Using Confidentiality via Camouflage

Author

Listed:
  • Han Li

    (Department of Computer Information Systems, Virginia State University, Petersburg, Virginia 23806)

  • Krishnamurty Muralidhar

    (Gatton College of Business and Economics, University of Kentucky, Lexington, Kentucky 40506)

  • Rathindra Sarathy

    (Department of Management Science and Information Systems, Oklahoma State University, Stillwater, Oklahoma 74078)

Abstract

The confidentiality-via-camouflage (CVC) procedure was recently proposed as an alternative to existing procedures such as data perturbation for protecting the confidentiality of numerical data. In this paper, we show that CVC, implemented with certain parameters, could potentially disclose confidential information. We identify the conditions under which such compromise will occur. We provide new derivations for the database administrator to select CVC parameters to avoid such disclosure. We also derive CVC parameters that allow the database administrator to evaluate the trade-off between disclosure risk and data utility, and we provide an expression to evaluate partial value disclosure risk of CVC. Thus, the results of this study should aid the database administrator in evaluating the applicability of CVC.

Suggested Citation

  • Han Li & Krishnamurty Muralidhar & Rathindra Sarathy, 2007. "Technical Note---Assessment of Disclosure Risk When Using Confidentiality via Camouflage," Operations Research, INFORMS, vol. 55(6), pages 1178-1182, December.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:6:p:1178-1182
    DOI: 10.1287/opre.1070.0426
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0426
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Krishnamurty Muralidhar & Dinesh Batra & Peeter J. Kirs, 1995. "Accessibility, Security, and Accuracy in Statistical Databases: The Case for the Multiplicative Fixed Data Perturbation Approach," Management Science, INFORMS, vol. 41(9), pages 1549-1564, September.
    2. Ram Gopal & Robert Garfinkel & Paulo Goes, 2002. "Confidentiality via Camouflage: The CVC Approach to Disclosure Limitation When Answering Queries to Databases," Operations Research, INFORMS, vol. 50(3), pages 501-516, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram D. Gopal & Paulo B. Goes & Robert S. Garfinkel, 1998. "Interval Protection of Confidential Information in a Database," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 309-322, August.
    2. Sumit Dutta Chowdhury & George T. Duncan & Ramayya Krishnan & Stephen F. Roehrig & Sumitra Mukherjee, 1999. "Disclosure Detection in Multivariate Categorical Databases: Auditing Confidentiality Protection Through Two New Matrix Operators," Management Science, INFORMS, vol. 45(12), pages 1710-1723, December.
    3. Rathindra Sarathy & Krishnamurty Muralidhar & Rahul Parsa, 2002. "Perturbing Nonnormal Confidential Attributes: The Copula Approach," Management Science, INFORMS, vol. 48(12), pages 1613-1627, December.
    4. Rathindra Sarathy & Krishnamurty Muralidhar, 2002. "The Security of Confidential Numerical Data in Databases," Information Systems Research, INFORMS, vol. 13(4), pages 389-403, December.
    5. Ram Gopal & Robert Garfinkel & Paulo Goes, 2002. "Confidentiality via Camouflage: The CVC Approach to Disclosure Limitation When Answering Queries to Databases," Operations Research, INFORMS, vol. 50(3), pages 501-516, June.
    6. Syam Menon & Sumit Sarkar & Shibnath Mukherjee, 2005. "Maximizing Accuracy of Shared Databases when Concealing Sensitive Patterns," Information Systems Research, INFORMS, vol. 16(3), pages 256-270, September.
    7. Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
    8. Haibing Lu & Jaideep Vaidya & Vijayalakshmi Atluri & Yingjiu Li, 2015. "Statistical Database Auditing Without Query Denial Threat," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 20-34, February.
    9. Manuel A. Nunez & Robert S. Garfinkel & Ram D. Gopal, 2007. "Stochastic Protection of Confidential Information in Databases: A Hybrid of Data Perturbation and Query Restriction," Operations Research, INFORMS, vol. 55(5), pages 890-908, October.
    10. Xiao-Bai Li & Sumit Sarkar, 2013. "Class-Restricted Clustering and Microperturbation for Data Privacy," Management Science, INFORMS, vol. 59(4), pages 796-812, April.
    11. Robert Garfinkel & Ram Gopal & Steven Thompson, 2007. "Releasing Individually Identifiable Microdata with Privacy Protection Against Stochastic Threat: An Application to Health Information," Information Systems Research, INFORMS, vol. 18(1), pages 23-41, March.
    12. S F Roehrig & R Padman & R Krishnan & G T Duncan, 2011. "Exact and heuristic methods for cell suppression in multi-dimensional linked tables," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 291-304, February.
    13. Heng Xu & Nan Zhang, 2022. "Implications of Data Anonymization on the Statistical Evidence of Disparity," Management Science, INFORMS, vol. 68(4), pages 2600-2618, April.
    14. Chu, Amanda M.Y. & Ip, Chun Yin & Lam, Benson S.Y. & So, Mike K.P., 2022. "Vine copula statistical disclosure control for mixed-type data," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    15. Seokho Lee & Marc G. Genton & Reinaldo B. Arellano-Valle, 2010. "Perturbation of Numerical Confidential Data via Skew-t Distributions," Management Science, INFORMS, vol. 56(2), pages 318-333, February.
    16. Krishnamurty Muralidhar & Rathindra Sarathy, 2006. "Data Shuffling--A New Masking Approach for Numerical Data," Management Science, INFORMS, vol. 52(5), pages 658-670, May.
    17. Krishnamurty Muralidhar & Rahul Parsa & Rathindra Sarathy, 1999. "A General Additive Data Perturbation Method for Database Security," Management Science, INFORMS, vol. 45(10), pages 1399-1415, October.
    18. Xiao-Bai Li & Sumit Sarkar, 2009. "Against Classification Attacks: A Decision Tree Pruning Approach to Privacy Protection in Data Mining," Operations Research, INFORMS, vol. 57(6), pages 1496-1509, December.
    19. Soon‐Young Huh & Kyoung‐Ll Bae, 1999. "Dynamic web server construction on the intranet using a change management framework," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 8(1), pages 45-60, March.
    20. Yi Qian & Hui Xie, 2015. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," Management Science, INFORMS, vol. 61(3), pages 520-541, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:6:p:1178-1182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.