An Adaptive Sampling Algorithm for Solving Markov Decision Processes
Author
Abstract
Suggested Citation
DOI: 10.1287/opre.1040.0145
Download full text from publisher
References listed on IDEAS
- Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Woonghee Tim Huh & Paat Rusmevichientong, 2014. "Online Sequential Optimization with Biased Gradients: Theory and Applications to Censored Demand," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 150-159, February.
- Mohammed Shahid Abdulla & Shalabh Bhatnagar, 2016. "Multi-armed bandits based on a variant of Simulated Annealing," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(2), pages 195-212, June.
- Arnoud V. den Boer & Bert Zwart, 2015. "Dynamic Pricing and Learning with Finite Inventories," Operations Research, INFORMS, vol. 63(4), pages 965-978, August.
- Michael C. Fu, 2019. "Simulation-Based Algorithms for Markov Decision Processes: Monte Carlo Tree Search from AlphaGo to AlphaZero," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-25, December.
- Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
- William L. Cooper & Bharath Rangarajan, 2012. "Performance Guarantees for Empirical Markov Decision Processes with Applications to Multiperiod Inventory Models," Operations Research, INFORMS, vol. 60(5), pages 1267-1281, October.
- Oleg Szehr, 2021. "Hedging of Financial Derivative Contracts via Monte Carlo Tree Search," Papers 2102.06274, arXiv.org, revised Apr 2021.
- Ronald Ortner, 2013. "Adaptive aggregation for reinforcement learning in average reward Markov decision processes," Annals of Operations Research, Springer, vol. 208(1), pages 321-336, September.
- Daniel R. Jiang & Lina Al-Kanj & Warren B. Powell, 2020. "Optimistic Monte Carlo Tree Search with Sampled Information Relaxation Dual Bounds," Operations Research, INFORMS, vol. 68(6), pages 1678-1697, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
- Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
- E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
- Chi H. Truong, 2014. "A Two Factor Model for Water Prices and Its Implications for Evaluating Real Options and Other Water Price Derivatives," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(1), pages 23-45, March.
- Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
- Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
- repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
- Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
- Beveridge, Christopher & Joshi, Mark & Tang, Robert, 2013. "Practical policy iteration: Generic methods for obtaining rapid and tight bounds for Bermudan exotic derivatives using Monte Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1342-1361.
- Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009.
"Regression methods in pricing American and Bermudan options using consumption processes,"
Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
- Belomestny, Denis & Milstein, Grigori N. & Spokoiny, Vladimir, 2006. "Regression methods in pricing American and Bermudan options using consumption processes," SFB 649 Discussion Papers 2006-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- David Heath & Eckhard Platen, 2002.
"A variance reduction technique based on integral representations,"
Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 362-369.
- David Heath & Eckhard Platen, 2002. "A Variance Reduction Technique Based on Integral Representations," Research Paper Series 75, Quantitative Finance Research Centre, University of Technology, Sydney.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
- Andreas Thomann, 2021. "Multi-asset scenario building for trend-following trading strategies," Annals of Operations Research, Springer, vol. 299(1), pages 293-315, April.
- Belomestny, Denis & Kolodko, Anastasia & Schoenmakers, John G. M., 2009. "Regression methods for stochastic control problems and their convergence analysis," SFB 649 Discussion Papers 2009-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
- Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
- Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020.
"Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & Olivier Scaillet, 2016. "Early exercise decision in American options with dividends, stochastic volatility and jumps," Papers 1612.03031, arXiv.org.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2016. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility and Jumps," Swiss Finance Institute Research Paper Series 16-73, Swiss Finance Institute.
- Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
- Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
- Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
More about this item
Keywords
dynamic programming/optimal control:Markov finite state;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:53:y:2005:i:1:p:126-139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.