IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i6p894-907.html
   My bibliography  Save this article

Genetically Engineered Decision Trees: Population Diversity Produces Smarter Trees

Author

Listed:
  • Zhiwei Fu

    (Fannie Mae, 4000 Wisconsin Avenue NW, Washington, DC 20016)

  • Bruce Golden

    (Robert H.Smith School of Business, University of Maryland, College Park, Maryland 20742)

  • Shreevardhan Lele

    (Robert H.Smith School of Business, University of Maryland, College Park, Maryland 20742)

  • S. Raghavan

    (Robert H.Smith School of Business, University of Maryland, College Park, Maryland 20742)

  • Edward Wasil

    (Kogod School of Business, American University, Washington, DC 20016)

Abstract

When considering a decision tree for the purpose of classification, accuracy is usually the sole performance measure used in the construction process. In this paper, we introduce the idea of combining a decision tree's expected value and variance in a new probabilistic measure for assessing the performance of a tree. We develop a genetic algorithm for constructing a tree using our new measure and conduct computational experiments that show the advantages of our approach. Further, we investigate the effect of introducing diversity into the population used by our genetic algorithm. We allow the genetic algorithm to simultaneously focus on two distinct probabilistic measures---one that is risk averse and one that is risk seeking. Our bivariate genetic algorithm for constructing a decision tree performs very well, scales up quite nicely to handle data sets with hundreds of thousands of points, and requires only a small percent of the data to generate a high-quality decision tree. We demonstrate the effectiveness of our algorithm on three large data sets.

Suggested Citation

  • Zhiwei Fu & Bruce Golden & Shreevardhan Lele & S. Raghavan & Edward Wasil, 2003. "Genetically Engineered Decision Trees: Population Diversity Produces Smarter Trees," Operations Research, INFORMS, vol. 51(6), pages 894-907, December.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:6:p:894-907
    DOI: 10.1287/opre.51.6.894.24919
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.6.894.24919
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.6.894.24919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiwei Fu & Bruce L. Golden & Shreevardhan Lele & S. Raghavan & Edward A. Wasil, 2003. "A Genetic Algorithm-Based Approach for Building Accurate Decision Trees," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 3-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olafsson, Sigurdur & Li, Xiaonan & Wu, Shuning, 2008. "Operations research and data mining," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1429-1448, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangfang Li & Hui Sun & Yu Gu & Ge Yu, 2022. "A Noise-Aware Multiple Imputation Algorithm for Missing Data," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    2. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    3. Xue Bai & Rema Padman & Joseph Ramsey & Peter Spirtes, 2008. "Tabu Search-Enhanced Graphical Models for Classification in High Dimensions," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 423-437, August.
    4. Balaji Padmanabhan & Alexander Tuzhilin, 2003. "On the Use of Optimization for Data Mining: Theoretical Interactions and eCRM Opportunities," Management Science, INFORMS, vol. 49(10), pages 1327-1343, October.
    5. Olafsson, Sigurdur & Li, Xiaonan & Wu, Shuning, 2008. "Operations research and data mining," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1429-1448, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:6:p:894-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.