IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i5p759-770.html
   My bibliography  Save this article

The Ordered Open-End Bin-Packing Problem

Author

Listed:
  • Jian Yang

    (Department of Industrial and Manufacturing Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102)

  • Joseph Y.-T. Leung

    (Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey 07102)

Abstract

We study a variant of the classical bin-packing problem, the ordered open-end bin-packing problem, where first a bin can be filled to a level above 1 as long as the removal of the last piece brings the bin's level back to below 1 and second, the last piece is the largest-indexed piece among all pieces in the bin. We conduct both worst-case and average-case analyses for the problem. In the worst-case analysis, pieces of size 1 play distinct roles and render the analysis more difficult with their presence. We give lower bounds for the performance ratio of any online algorithm for cases both with and without the 1-pieces, and in the case without the 1-pieces, identify an online algorithm whose worst-case performance ratio is less than 2 and an offline algorithm with good worst-case performance. In the average-case analysis, assuming that pieces are independently and uniformly drawn from [0, 1], we find the optimal asymptotic average ratio of the number of occupied bins over the number of pieces. We also introduce other online algorithms and conduct simulation study on the average-case performances of all the proposed algorithms.

Suggested Citation

  • Jian Yang & Joseph Y.-T. Leung, 2003. "The Ordered Open-End Bin-Packing Problem," Operations Research, INFORMS, vol. 51(5), pages 759-770, October.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:5:p:759-770
    DOI: 10.1287/opre.51.5.759.16753
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.5.759.16753
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.5.759.16753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Csirik, J. & Frenk, J.B.G. & Galambos, G. & Rinnooy Kan, A.H.G., 1991. "Probabilistic analysis of algorithms for dual bin packing problems," Econometric Institute Research Papers 11733, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leah Epstein, 2019. "A lower bound for online rectangle packing," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 846-866, October.
    2. Leung, Joseph Y.-T. & Li, Chung-Lun, 2008. "An asymptotic approximation scheme for the concave cost bin packing problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 582-586, December.
    3. Alberto Ceselli & Giovanni Righini, 2008. "An Optimization Algorithm for the Ordered Open-End Bin-Packing Problem," Operations Research, INFORMS, vol. 56(2), pages 425-436, April.
    4. János Balogh & Leah Epstein & Asaf Levin, 2021. "More on ordered open end bin packing," Journal of Scheduling, Springer, vol. 24(6), pages 589-614, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Martinovic & Guntram Scheithauer, 2016. "The proper relaxation and the proper gap of the skiving stock problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 527-548, December.
    2. Vadim M. Kartak & Artem V. Ripatti, 2019. "Large proper gaps in bin packing and dual bin packing problems," Journal of Global Optimization, Springer, vol. 74(3), pages 467-476, July.
    3. Martinovic, J. & Scheithauer, G., 2016. "Integer linear programming models for the skiving stock problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 356-368.
    4. John Martinovic & Guntram Scheithauer, 2018. "Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case," Annals of Operations Research, Springer, vol. 271(2), pages 811-829, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:5:p:759-770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.