IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v47y1999i4p509-523.html
   My bibliography  Save this article

Variance Reduction in Simulations of Loss Models

Author

Listed:
  • Rayadurgam Srikant

    (Coordinated Science Laboratory and Department of General Engineering, University of Illinois, 1308 W. Main Street, Urbana, Illinois 61801)

  • Ward Whitt

    (AT&T Labs, Room A117, Shannon Laboratory, 180 Park Avenue, Florham Park, New Jersey 07932-0971)

Abstract

We propose a new estimator of steady-state blocking probabilities for simulations of stochastic loss models that can be much more efficient than the natural estimator (ratio of losses to arrivals). The proposed estimator is a convex combination of the natural estimator and an indirect estimator based on the average number of customers in service, obtained from Little's law ( L = λ W ). It exploits the known offered load (product of the arrival rate and the mean service time). The variance reduction is dramatic when the blocking probability is high and the service times are highly variable. The advantage of the combination estimator in this regime is partly due to the indirect estimator, which itself is much more efficient than the natural estimator in this regime, and partly due to strong correlation (most often negative) between the natural and indirect estimators. In general, when the variances of two component estimators are very different, the variance reduction from the optimal convex combination is about 1 − ρ 2 , where ρ is the correlation between the component estimators. For loss models, the variances of the natural and indirect estimators are very different under both light and heavy loads. The combination estimator is effective for estimating multiple blocking probabilities in loss networks with multiple traffic classes, some of which are in normal loading while others are in light and heavy loading, because the combination estimator does at least as well as either component estimator, and it provides improvement as well.

Suggested Citation

  • Rayadurgam Srikant & Ward Whitt, 1999. "Variance Reduction in Simulations of Loss Models," Operations Research, INFORMS, vol. 47(4), pages 509-523, August.
  • Handle: RePEc:inm:oropre:v:47:y:1999:i:4:p:509-523
    DOI: 10.1287/opre.47.4.509
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.47.4.509
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.47.4.509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter W. Glynn & Ward Whitt, 1989. "Indirect Estimation Via L = λ W," Operations Research, INFORMS, vol. 37(1), pages 82-103, February.
    2. John S. Carson & Averill M. Law, 1980. "Conservation Equations and Variance Reduction in Queueing Simulations," Operations Research, INFORMS, vol. 28(3-part-i), pages 535-546, June.
    3. Diane P. Bischak & W. David Kelton & Stephen M. Pollock, 1993. "Weighted Batch Means for Confidence Intervals in Steady-State Simulations," Management Science, INFORMS, vol. 39(8), pages 1002-1019, August.
    4. Averill M. Law, 1975. "Efficient Estimators for Simulated Queueing Systems," Management Science, INFORMS, vol. 22(1), pages 30-41, September.
    5. Ward Whitt, 1980. "Continuity of Generalized Semi-Markov Processes," Mathematics of Operations Research, INFORMS, vol. 5(4), pages 494-501, November.
    6. Ward Whitt, 1989. "Planning Queueing Simulations," Management Science, INFORMS, vol. 35(11), pages 1341-1366, November.
    7. Stephen S. Lavenberg & Thomas L. Moeller & Peter D. Welch, 1982. "Statistical Results on Control Variables with Application to Queueing Network Simulation," Operations Research, INFORMS, vol. 30(1), pages 182-202, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth W. Bauer & James R. Wilson, 1992. "Control‐variate selection criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 307-321, April.
    2. Barry L. Nelson, 2004. "50th Anniversary Article: Stochastic Simulation Research in Management Science," Management Science, INFORMS, vol. 50(7), pages 855-868, July.
    3. Song, Wheyming Tina, 1996. "On the estimation of optimal batch sizes in the analysis of simulation output," European Journal of Operational Research, Elsevier, vol. 88(2), pages 304-319, January.
    4. Ehsan Mehdad & Jack P.C. Kleijnen, 2018. "Stochastic intrinsic Kriging for simulation metamodeling," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 34(3), pages 322-337, May.
    5. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    6. Dijk, N.M. van, 1988. "A LCFS finite buffer model with batch input and non-exponential services," Serie Research Memoranda 0007, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    7. Shane G. Henderson & Peter W. Glynn, 1999. "Derandomizing Variance Estimators," Operations Research, INFORMS, vol. 47(6), pages 907-916, December.
    8. Noah Gans & Garrett van Ryzin, 1999. "Dynamic Vehicle Dispatching: Optimal Heavy Traffic Performance and Practical Insights," Operations Research, INFORMS, vol. 47(5), pages 675-692, October.
    9. Ockerman, Daniel H. & Goldsman, David, 1999. "Student t-tests and compound tests to detect transients in simulated time series," European Journal of Operational Research, Elsevier, vol. 116(3), pages 681-691, August.
    10. Dijk, N.M. van, 1987. "A LCFS finite buffer model with finite source batch input," Serie Research Memoranda 0049, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    11. Olga Fink & Enrico Zio, 2013. "Semi-Markov processes with semi-regenerative states for the availability analysis of chemical process plants with storage units," Journal of Risk and Reliability, , vol. 227(3), pages 279-289, June.
    12. Feng Yang & Bruce E. Ankenman & Barry L. Nelson, 2008. "Estimating Cycle Time Percentile Curves for Manufacturing Systems via Simulation," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 628-643, November.
    13. David Goldsman & Keebom Kang & Andrew F. Seila, 1999. "Cramér-von Mises Variance Estimators for Simulations," Operations Research, INFORMS, vol. 47(2), pages 299-309, April.
    14. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    15. Russell C. H. Cheng & Jack P. C. Kleijnen, 1999. "Improved Design of Queueing Simulation Experiments with Highly Heteroscedastic Responses," Operations Research, INFORMS, vol. 47(5), pages 762-777, October.
    16. Kouki, Chaaben & Babai, M. Zied & Jemai, Zied & Minner, Stefan, 2019. "Solution procedures for lost sales base-stock inventory systems with compound Poisson demand," International Journal of Production Economics, Elsevier, vol. 209(C), pages 172-182.
    17. Paul Glasserman & Bin Yu, 2005. "Large Sample Properties of Weighted Monte Carlo Estimators," Operations Research, INFORMS, vol. 53(2), pages 298-312, April.
    18. Feng Yang & Bruce Ankenman & Barry L. Nelson, 2007. "Efficient generation of cycle time‐throughput curves through simulation and metamodeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 78-93, February.
    19. Ohad Perry & Ward Whitt, 2013. "A Fluid Limit for an Overloaded X Model via a Stochastic Averaging Principle," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 294-349, May.
    20. Athanassios N. Avramidis & Kenneth W. Bauer & James R. Wilson, 1991. "Simulation of stochastic activity networks using path control variates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 183-201, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:47:y:1999:i:4:p:509-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.