IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v45y1997i2p226-234.html
   My bibliography  Save this article

Optimized Crossover for the Independent Set Problem

Author

Listed:
  • Charu C. Aggarwal

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

  • James B. Orlin

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

  • Ray P. Tai

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

Abstract

We propose a knowledge-based crossover mechanism for genetic algorithms that exploits the structure of the solution rather than its coding. More generally, we suggest broad guidelines for constructing the knowledge-based crossover mechanisms. This technique uses an optimized crossover mechanism, in which the one of the two children is constructed in such a way as to have the best objective function value from the feasible set of children, while the other is constructed so as to maintain the diversity of the search space. We implement our approach on a classical combinatorial problem, called the independent set problem. The resulting genetic algorithm dominates all other genetic algorithms for the problem and yields one of the best heuristics for the independent set problem in terms of robustness and time performance. The primary purpose of this paper is to demonstrate the power of knowledge based mechanisms in genetic algorithms.

Suggested Citation

  • Charu C. Aggarwal & James B. Orlin & Ray P. Tai, 1997. "Optimized Crossover for the Independent Set Problem," Operations Research, INFORMS, vol. 45(2), pages 226-234, April.
  • Handle: RePEc:inm:oropre:v:45:y:1997:i:2:p:226-234
    DOI: 10.1287/opre.45.2.226
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.45.2.226
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.45.2.226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui-Chin Tang & Chiang Kao, 2004. "Searching for Good Multiple Recursive Random Number Generators via a Genetic Algorithm," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 284-290, August.
    2. Helena R. Lourenço & José P. Paixão & Rita Portugal, 2001. "Multiobjective Metaheuristics for the Bus Driver Scheduling Problem," Transportation Science, INFORMS, vol. 35(3), pages 331-343, August.
    3. Bergey, Paul K. & Ragsdale, Cliff, 2005. "Modified differential evolution: a greedy random strategy for genetic recombination," Omega, Elsevier, vol. 33(3), pages 255-265, June.
    4. Chu, Chao-Hsien & Premkumar, G. & Chou, Hsinghua, 2000. "Digital data networks design using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 127(1), pages 140-158, November.
    5. Trick, Michael A. & Yildiz, Hakan, 2012. "Locally Optimized Crossover for the Traveling Umpire Problem," European Journal of Operational Research, Elsevier, vol. 216(2), pages 286-292.
    6. Michelle Dunbar & Simon Belieres & Nagesh Shukla & Mehrdad Amirghasemi & Pascal Perez & Nishikant Mishra, 2020. "A genetic column generation algorithm for sustainable spare part delivery: application to the Sydney DropPoint network," Annals of Operations Research, Springer, vol. 290(1), pages 923-941, July.
    7. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:45:y:1997:i:2:p:226-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.