IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v37y1989i6p916-924.html
   My bibliography  Save this article

Fast, Effective Algorithms for Simple Assembly Line Balancing Problems

Author

Listed:
  • Steven T. Hackman

    (Georgia Institute of Technology, Atlanta, Georgia)

  • Michael J. Magazine

    (University of Waterloo, Waterloo, Ontario, Canada)

  • T. S. Wee

    (Canadian Pacific Railroad, Montreal, Quebec, Canada)

Abstract

A simple, fast and effective heuristic for the Simple Assembly Line Balancing Type I problem (minimizing the number of workstations) is proposed. A fast and effective branch-and-bound algorithm, which incorporates this heuristic for use in bounding, is developed. The algorithm introduces heuristic fathoming as a technique for reducing the size of the branch-and-bound tree. Methods to solve the Simple Assembly Line Balancing Type II problem (maximizing the production rate) are also described. Upper bounds on all heuristics for both problems are provided.

Suggested Citation

  • Steven T. Hackman & Michael J. Magazine & T. S. Wee, 1989. "Fast, Effective Algorithms for Simple Assembly Line Balancing Problems," Operations Research, INFORMS, vol. 37(6), pages 916-924, December.
  • Handle: RePEc:inm:oropre:v:37:y:1989:i:6:p:916-924
    DOI: 10.1287/opre.37.6.916
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.37.6.916
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.37.6.916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anulark Pinnoi & Wilbert E. Wilhelm, 1998. "Assembly System Design: A Branch and Cut Approach," Management Science, INFORMS, vol. 44(1), pages 103-118, January.
    2. Miltenburg, John, 1998. "Balancing U-lines in a multiple U-line facility," European Journal of Operational Research, Elsevier, vol. 109(1), pages 1-23, August.
    3. Klein, Robert & Scholl, Armin, 1996. "Maximizing the production rate in simple assembly line balancing -- A branch and bound procedure," European Journal of Operational Research, Elsevier, vol. 91(2), pages 367-385, June.
    4. Kenneth H. Doerr & Theodore D. Klastorin & Michael J. Magazine, 2000. "Synchronous Unpaced Flow Lines with Worker Differences and Overtime Cost," Management Science, INFORMS, vol. 46(3), pages 421-435, March.
    5. Smith, Kate & Palaniswami, M. & Krishnamoorthy, M., 1996. "Traditional heuristic versus Hopfield neural network approaches to a car sequencing problem," European Journal of Operational Research, Elsevier, vol. 93(2), pages 300-316, September.
    6. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    7. Amen, Matthias, 2000. "Heuristic methods for cost-oriented assembly line balancing: A survey," International Journal of Production Economics, Elsevier, vol. 68(1), pages 1-14, October.
    8. Fleszar, Krzysztof & Hindi, Khalil S., 2003. "An enumerative heuristic and reduction methods for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 606-620, March.
    9. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    10. Christian Blum, 2008. "Beam-ACO for Simple Assembly Line Balancing," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 618-627, November.
    11. van Zante-de Fokkert, Jannet I. & de Kok, Ton G., 1997. "The mixed and multi model line balancing problem: a comparison," European Journal of Operational Research, Elsevier, vol. 100(3), pages 399-412, August.
    12. Fatih Ugurdag, H. & Rachamadugu, Ram & Papachristou, Christos A., 1997. "Designing paced assembly lines with fixed number of stations," European Journal of Operational Research, Elsevier, vol. 102(3), pages 488-501, November.
    13. Franco Guerriero & John Miltenburg, 2003. "The stochastic U‐line balancing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(1), pages 31-57, February.
    14. Roemer, Thomas A. & Ahmadi, Reza, 2010. "Models for concurrent product and process design," European Journal of Operational Research, Elsevier, vol. 203(3), pages 601-613, June.
    15. Schulze, Philipp & Scholl, Armin & Walter, Rico, 2024. "R-SALSA: A branch, bound, and remember algorithm for the workload smoothing problem on simple assembly lines," European Journal of Operational Research, Elsevier, vol. 312(1), pages 38-55.
    16. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    17. Hop, Nguyen Van, 2006. "A heuristic solution for fuzzy mixed-model line balancing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 798-810, February.
    18. Peeters, Marc & Degraeve, Zeger, 2006. "An linear programming based lower bound for the simple assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 716-731, February.
    19. Kimms, Alf, 2000. "Balancing u-shaped assembly lines heuristically," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 524, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Scholl, Armin & Klein, Robert, 1999. "Balancing assembly lines effectively - A computational comparison," European Journal of Operational Research, Elsevier, vol. 114(1), pages 50-58, April.
    21. Bautista, Joaquin & Pereira, Jordi, 2007. "Ant algorithms for a time and space constrained assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2016-2032, March.
    22. Wilbert E. Wilhelm & Radu Gadidov, 2004. "A Branch-and-Cut Approach for a Generic Multiple-Product, Assembly-System Design Problem," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 39-55, February.
    23. Hassan Zohali & Bahman Naderi & Vahid Roshanaei, 2022. "Solving the Type-2 Assembly Line Balancing with Setups Using Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 315-332, January.
    24. Daniel Leitold & Agnes Vathy-Fogarassy & Janos Abonyi, 2019. "Empirical working time distribution-based line balancing with integrated simulated annealing and dynamic programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 455-473, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:37:y:1989:i:6:p:916-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.