IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v31y1983i4p752-771.html
   My bibliography  Save this article

Annihilation Prediction for Lanchester-Type Models of Modern Warfare

Author

Listed:
  • James G. Taylor

    (Naval Postgraduate School, Monterey, California)

  • Gerald G. Brown

    (Naval Postgraduate School, Monterey, California)

Abstract

This paper introduces important new functions for analytic solution of Lanchester-type equations of modem warfare for combat between two homogeneous forces modeled by power attrition-rate coefficients with “no offset.” Tabulations of these Lanchester-Clifford-Schläfli (or LCS) functions allow one to study this particular variable-coefficient model almost as easily and thoroughly as Lanchester's classic constant-coefficient one. LCS functions allow one to obtain important information (in particular, force-annihilation prediction) without having to spend the time and effort of computing force-level trajectories. The choice of these particular functions is based on theoretical considerations that apply in general to Lanchester-type equations of modern warfare and provide guidance for developing other canonical functions. Moreover, our new LCS functions also provide valuable information about related variable-coefficient models. Also, we introduce an important transformation of the battle's time scale that not only simplifies the force-level equations, but also shows that relative fire effectiveness and intensity of combat are the only two weapon-system parameters determining the course of such variable-coefficient Lanchester-type combat.

Suggested Citation

  • James G. Taylor & Gerald G. Brown, 1983. "Annihilation Prediction for Lanchester-Type Models of Modern Warfare," Operations Research, INFORMS, vol. 31(4), pages 752-771, August.
  • Handle: RePEc:inm:oropre:v:31:y:1983:i:4:p:752-771
    DOI: 10.1287/opre.31.4.752
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.31.4.752
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.31.4.752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moshe Kress, 2020. "Lanchester Models for Irregular Warfare," Mathematics, MDPI, vol. 8(5), pages 1-14, May.
    2. González, Eduardo & Villena, Marcelo, 2011. "Spatial Lanchester models," European Journal of Operational Research, Elsevier, vol. 210(3), pages 706-715, May.
    3. Israel David, 1995. "Lanchester modeling and the biblical account of the battles of gibeah," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 579-584, June.
    4. David Connors & Michael J. Armstrong & John Bonnett, 2015. "A Counterfactual Study of the Charge of the Light Brigade," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 48(2), pages 80-89, June.
    5. N. K. Jaiswal & Meena Kumari & B. S. Nagabhushana, 1995. "Optimal force mix in heterogeneous combat," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 873-887, September.
    6. Gregory Levitin & Kjell Hausken, 2012. "Resource Distribution in Multiple Attacks with Imperfect Detection of the Attack Outcome," Risk Analysis, John Wiley & Sons, vol. 32(2), pages 304-318, February.
    7. G T Kaup & D J Kaup & N M Finkelstein, 2005. "The Lanchester (n, 1) problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1399-1407, December.
    8. Chad W. Seagren & Donald P. Gaver & Patricia A. Jacobs, 2019. "A stochastic air combat logistics decision model for Blue versus Red opposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 663-674, December.
    9. Ian R. Johnson & Niall J. MacKay, 2011. "Lanchester models and the battle of Britain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 210-222, April.
    10. Gregory Levitin & Kjell Hausken, 2010. "Resource Distribution in Multiple Attacks Against a Single Target," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1231-1239, August.
    11. M.P. Wiper & L.I. Pettit & K.D.S. Young, 2000. "Bayesian inference for a Lanchester type combat model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 541-558, October.
    12. Wayne P. Hughes, 1995. "A salvo model of warships in missile combat used to evaluate their staying power," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(2), pages 267-289, March.
    13. David L. Bitters, 1995. "Efficient concentration of forces, or how to fight outnumbered and win," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(3), pages 397-418, April.
    14. Michael J. Armstrong, 2004. "Effects of lethality in naval combat models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 28-43, February.
    15. Hausken, Kjell & Moxnes, John F., 2002. "Stochastic conditional and unconditional warfare," European Journal of Operational Research, Elsevier, vol. 140(1), pages 61-87, July.
    16. Patrick S. Chen & Peter Chu, 2001. "Applying Lanchester's linear law to model the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 653-661, December.
    17. Kjell Hausken & John F. Moxnes, 2005. "Approximations and empirics for stochastic war equations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 682-700, October.
    18. Stephen Biddle & Stephen Long, 2004. "Democracy and Military Effectiveness," Journal of Conflict Resolution, Peace Science Society (International), vol. 48(4), pages 525-546, August.
    19. Michael J. Armstrong & Steven E. Sodergren, 2015. "Refighting Pickett's Charge: Mathematical Modeling of the Civil War Battlefield," Social Science Quarterly, Southwestern Social Science Association, vol. 96(4), pages 1153-1168, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:31:y:1983:i:4:p:752-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.