IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v30y1982i4p777-795.html
   My bibliography  Save this article

Efficient Algorithms for the (Weighted) Minimum Circle Problem

Author

Listed:
  • Donald W. Hearn

    (University of Florida, Gainesville, Florida)

  • James Vijay

    (University of Florida, Gainesville, Florida)

Abstract

The (weighted) minimum covering circle problem is a well-known single facility location problem used in emergency facility models. This paper introduces a classification scheme, based on fundamental mathematical programming concepts, for algorithms which solve both weighted and unweighted versions. One result of this classification is proof that a recently developed method is identical to one developed in the nineteenth century. Also, within the classification scheme, efficient new algorithms are given for the weighted problem. The results of some extensive computational tests identify the (empirically) fastest methods.

Suggested Citation

  • Donald W. Hearn & James Vijay, 1982. "Efficient Algorithms for the (Weighted) Minimum Circle Problem," Operations Research, INFORMS, vol. 30(4), pages 777-795, August.
  • Handle: RePEc:inm:oropre:v:30:y:1982:i:4:p:777-795
    DOI: 10.1287/opre.30.4.777
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.30.4.777
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.30.4.777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O Berman & Z Drezner, 2003. "A probabilistic one-centre location problem on a network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 871-877, August.
    2. Drezner, Zvi & Guyse, Jeffery, 1999. "Application of decision analysis techniques to the Weber facility location problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 69-79, July.
    3. M. Cera & J. A. Mesa & F. A. Ortega & F. Plastria, 2008. "Locating a Central Hunter on the Plane," Journal of Optimization Theory and Applications, Springer, vol. 136(2), pages 155-166, February.
    4. Piyush Kumar & E. Alper Yıldırım, 2009. "An Algorithm and a Core Set Result for the Weighted Euclidean One-Center Problem," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 614-629, November.
    5. Mark E. Cawood & P. M. Dearing, 2024. "The weighted Euclidean one-center problem in $${\mathbb {R}}^n$$ R n," Computational Optimization and Applications, Springer, vol. 89(2), pages 553-574, November.
    6. Okabe, Atsuyuki & Suzuki, Atsuo, 1997. "Locational optimization problems solved through Voronoi diagrams," European Journal of Operational Research, Elsevier, vol. 98(3), pages 445-456, May.
    7. P. Dearing & Andrea Smith, 2013. "A dual algorithm for the minimum covering weighted ball problem in $${\mathbb{R}^n}$$," Journal of Global Optimization, Springer, vol. 55(2), pages 261-278, February.
    8. Zvi Drezner & G. O. Wesolowsky, 1991. "Facility location when demand is time dependent," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 763-777, October.
    9. Minnie H. Patel & Deborah L. Nettles & Stuart J. Deutsch, 1993. "A linear‐programming‐based method for determining whether or not n demand points are on a hemisphere," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 543-552, June.
    10. Elshaikh, Abdalla & Salhi, Said & Nagy, Gábor, 2015. "The continuous p-centre problem: An investigation into variable neighbourhood search with memory," European Journal of Operational Research, Elsevier, vol. 241(3), pages 606-621.
    11. Zvi Drezner, 1987. "On the rectangular p‐center problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(2), pages 229-234, April.
    12. Gass, Saul I. & Roy, Pallabi Guha, 2003. "The compromise hypersphere for multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 144(3), pages 459-479, February.
    13. P. M. Dearing & Pietro Belotti & Andrea M. Smith, 2016. "A primal algorithm for the weighted minimum covering ball problem in $$\mathbb {R}^n$$ R n," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 466-492, July.
    14. Blanco, Víctor & Puerto, Justo, 2021. "Covering problems with polyellipsoids: A location analysis perspective," European Journal of Operational Research, Elsevier, vol. 289(1), pages 44-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:30:y:1982:i:4:p:777-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.