IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v30y1982i2p375-390.html
   My bibliography  Save this article

On Dynamic Programming Methods for Assembly Line Balancing

Author

Listed:
  • Edward P. C. Kao

    (University of Houston, Houston, Texas)

  • Maurice Queyranne

    (University of Houston, Houston, Texas)

Abstract

Two dynamic programming approaches for treating sequencing problems—one proposed by Schrage and Baker and the other by Lawler—are discussed in the context of an assembly line balancing problem. A variant of the Schrage-Baker method is proposed to extend its range of applicability. The three approaches are compared using randomly generated test problems. We find that Lawler's “reaching”-based approach is superior to the other two “pulling”-based alternatives in both time and storage requirements. Based on the empirical results, we present time and space estimates for solving problems of different sizes and order strengths, and discuss the relative merits of the three procedures.

Suggested Citation

  • Edward P. C. Kao & Maurice Queyranne, 1982. "On Dynamic Programming Methods for Assembly Line Balancing," Operations Research, INFORMS, vol. 30(2), pages 375-390, April.
  • Handle: RePEc:inm:oropre:v:30:y:1982:i:2:p:375-390
    DOI: 10.1287/opre.30.2.375
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.30.2.375
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.30.2.375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Messelis, Tommy & De Causmaecker, Patrick, 2014. "An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 233(3), pages 511-528.
    2. Christian Blum, 2008. "Beam-ACO for Simple Assembly Line Balancing," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 618-627, November.
    3. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    4. Franco Guerriero & John Miltenburg, 2003. "The stochastic U‐line balancing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(1), pages 31-57, February.
    5. Sen, Tapan & Sulek, Joanne M. & Dileepan, Parthasarati, 2003. "Static scheduling research to minimize weighted and unweighted tardiness: A state-of-the-art survey," International Journal of Production Economics, Elsevier, vol. 83(1), pages 1-12, January.
    6. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    7. Pereira, Jordi & Ritt, Marcus, 2023. "Exact and heuristic methods for a workload allocation problem with chain precedence constraints," European Journal of Operational Research, Elsevier, vol. 309(1), pages 387-398.
    8. Bert De Reyck & Erik Demeulemeester & Willy Herroelen, 1998. "Local search methods for the discrete time/resource trade‐off problem in project networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(6), pages 553-578, September.
    9. Salii, Yaroslav, 2019. "Revisiting dynamic programming for precedence-constrained traveling salesman problem and its time-dependent generalization," European Journal of Operational Research, Elsevier, vol. 272(1), pages 32-42.
    10. Daniel Leitold & Agnes Vathy-Fogarassy & Janos Abonyi, 2019. "Empirical working time distribution-based line balancing with integrated simulated annealing and dynamic programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 455-473, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:30:y:1982:i:2:p:375-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.