IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v27y1979i4p823-838.html
   My bibliography  Save this article

Computing Network Reliability

Author

Listed:
  • Michael O. Ball

    (University of Maryland, College Park, Maryland)

Abstract

This paper presents an algorithm to compute reliability measures on a stochastic network in which both nodes and links can fail. The measures considered are the probability that nodes s and t can communicate for all node pairs s and t , the probability that all operative node pairs can communicate, and the expected number of node pairs communicating. It also computes the latter two measures when all communication must proceed through a root node. A specialized version of the algorithm is given for networks in which only nodes can fail.

Suggested Citation

  • Michael O. Ball, 1979. "Computing Network Reliability," Operations Research, INFORMS, vol. 27(4), pages 823-838, August.
  • Handle: RePEc:inm:oropre:v:27:y:1979:i:4:p:823-838
    DOI: 10.1287/opre.27.4.823
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.27.4.823
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.27.4.823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun, Tackseung & Kim, Jeong-Yoo, 2007. "Connectivity, stability and efficiency in a network as an information flow," Mathematical Social Sciences, Elsevier, vol. 53(3), pages 314-331, May.
    2. Hougaard, Jens Leth & Moulin, Hervé, 2014. "Sharing the cost of redundant items," Games and Economic Behavior, Elsevier, vol. 87(C), pages 339-352.
    3. Cancela, Héctor & Petingi, Louis, 2007. "Properties of a generalized source-to-all-terminal network reliability model with diameter constraints," Omega, Elsevier, vol. 35(6), pages 659-670, December.
    4. Jane, Chin-Chia & Laih, Yih-Wenn, 2010. "A dynamic bounding algorithm for approximating multi-state two-terminal reliability," European Journal of Operational Research, Elsevier, vol. 205(3), pages 625-637, September.
    5. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    6. Bigatti, A.M. & Pascual-Ortigosa, P. & Sáenz-de-Cabezón, E., 2021. "A C++ class for multi-state algebraic reliability computations," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Liu, Xiaohang & Zheng, Shansuo & Wu, Xinxia & Chen, Dianxin & He, Jinchuan, 2021. "Research on a seismic connectivity reliability model of power systems based on the quasi-Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Jens Leth Hougaard & Hervé Moulin, 2018. "Sharing the cost of risky projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(3), pages 663-679, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:27:y:1979:i:4:p:823-838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.