IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v14y1966i4p568-594.html
   My bibliography  Save this article

The Synchronization of Traffic Signals by Mixed-Integer Linear Programming

Author

Listed:
  • John D. C. Little

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

Abstract

Traffic signals can be synchronized so that a car, starting at one end of a main artery and traveling at preassigned speeds, can go to the other end without stopping for a red light. The portion of a signal cycle for which this is possible is called the bandwidth for that direction. A mixed-integer linear program is formulated for the following arterial problem: Given (1) an arbitrary number of signals, (2) the red-green split at each signal, (3) upper and lower limits on signal period, (4) upper and lower limits on speed between adjacent signals, and (5) limits on change in speed, find (1) common signal period, (2) speeds between signals, and (3) the relative phasing of the signals, in order to maximize the sum of the bandwidths for the two directions. Several variants of the problem are formulated, including the problem of synchronizing a network of signals. Branch-and-bound algorithms are developed for solving the mixed-integer linear programs by solving sequences of ordinary linear programs. A 10-signal arterial example and a 7-signal network example are worked out.

Suggested Citation

  • John D. C. Little, 1966. "The Synchronization of Traffic Signals by Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 14(4), pages 568-594, August.
  • Handle: RePEc:inm:oropre:v:14:y:1966:i:4:p:568-594
    DOI: 10.1287/opre.14.4.568
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.14.4.568
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.14.4.568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yafeng, 2008. "Robust optimal traffic signal timing," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 911-924, December.
    2. Pillai, Rekha S. & Rathi*, Ajay K. & L. Cohen, Stephen, 1998. "A restricted branch-and-bound approach for generating maximum bandwidth signal timing plans for traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 517-529, November.
    3. Shenzhen Ding & Xumei Chen & Lei Yu & Xu Wang, 2019. "Arterial Offset Optimization Considering the Delay and Emission of Platoon: A Case Study in Beijing," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    4. Bielli, Maurizio & Reverberi, Pierfrancesco, 1996. "New operations research and artificial intelligence approaches to traffic engineering problems," European Journal of Operational Research, Elsevier, vol. 92(3), pages 550-572, August.
    5. Papola, Natale & Fusco, Gaetano, 1998. "Maximal bandwidth problems: a new algorithm based on the properties of periodicity of the system," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 277-288, May.
    6. Zhou, Hongmin & Hawkins, H. Gene & Zhang, Yunlong, 2017. "Arterial signal coordination with uneven double cycling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 409-429.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:14:y:1966:i:4:p:568-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.