IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3882-d249058.html
   My bibliography  Save this article

Arterial Offset Optimization Considering the Delay and Emission of Platoon: A Case Study in Beijing

Author

Listed:
  • Shenzhen Ding

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Xumei Chen

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
    School of Traffic and Transportation, Xuchang University, Xuchang 461000, Henan, China)

  • Lei Yu

    (School of Traffic and Transportation, Xuchang University, Xuchang 461000, Henan, China
    Department of Transportation Studies, Texas Southern University, Houston, TX 77004, USA)

  • Xu Wang

    (China Railway Siyuan Survey and Design Group CO., LTD., Wuhan 430063, Hubei, China)

Abstract

The effective setting of offsets between intersections on arterial roads can greatly reduce the travel time of vehicles through intersections. However, coordinated control systems of urban arterial roads often do not achieve the desired effect. On the contrary, they are very likely to increase the traffic congestion on arterial roads, resulting in more delays of the platoon with more exhaust emissions, if the coordinated control system does not have effective settings. Meanwhile, taking into account increasing environmental pollution, measures are needed to solve the conflict between environmental and traffic management. Thus, in order to ensure the smooth flow of urban arterial roads while considering the environment, this paper develops a bi-objective offset optimization model, with reducing delays of the platoon on arterial roads as the primary objective, and reducing exhaust emissions as the secondary objective. The proposed bi-objective model is based on the division of platoon operating modes on arterial roads, and more pollutant types, including NOx, HC, and CO, are considered when measuring environmental impact. Further, the modified hierarchical method, combining the branch and bound approach with the introductions of a relaxation coefficient, is employed to solve the model. By introducing a relaxation coefficient, the modified hierarchical method overcomes the defects of the traditional one. Finally, Xi Dajie Road in Beijing was taken as an example. The results showed that the bi-objective offset optimization model, considering both the delays and emissions of the platoon reduced delays by up to 20% and emissions by 7% compared with the existing timing plan. If compared with the offset optimization model considering delays only, such a model increases delays no more than 3% and reduces emissions by 6%.

Suggested Citation

  • Shenzhen Ding & Xumei Chen & Lei Yu & Xu Wang, 2019. "Arterial Offset Optimization Considering the Delay and Emission of Platoon: A Case Study in Beijing," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3882-:d:249058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John D. C. Little, 1966. "The Synchronization of Traffic Signals by Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 14(4), pages 568-594, August.
    2. Xianmin Song & Pengfei Tao & Ligang Chen & Dianhai Wang, 2012. "Offset Optimization Based on Queue Length Constraint for Saturated Arterial Intersections," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suhaib Alshayeb & Aleksandar Stevanovic & Nemanja Dobrota, 2021. "Impact of Various Operating Conditions on Simulated Emissions-Based Stop Penalty at Signalized Intersections," Sustainability, MDPI, vol. 13(18), pages 1-30, September.
    2. Mohammed Al-Turki & Arshad Jamal & Hassan M. Al-Ahmadi & Mohammed A. Al-Sughaiyer & Muhammad Zahid, 2020. "On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    3. Min Li & Dijia Luo & Bilong Liu & Xilong Zhang & Zhen Liu & Mengshan Li, 2022. "Arterial Coordination Control Optimization Based on AM–BAND–PBAND Model," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    4. Xiaoyue Wen & Dianhai Wang & Sheng Jin & Guomin Qian & Yixuan Zhu, 2023. "A Signal Coordination Model for Long Arterials Considering Link Traffic Flow Characteristics," Sustainability, MDPI, vol. 15(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielli, Maurizio & Reverberi, Pierfrancesco, 1996. "New operations research and artificial intelligence approaches to traffic engineering problems," European Journal of Operational Research, Elsevier, vol. 92(3), pages 550-572, August.
    2. Yin, Yafeng, 2008. "Robust optimal traffic signal timing," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 911-924, December.
    3. Pillai, Rekha S. & Rathi*, Ajay K. & L. Cohen, Stephen, 1998. "A restricted branch-and-bound approach for generating maximum bandwidth signal timing plans for traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 517-529, November.
    4. Zhou, Hongmin & Hawkins, H. Gene & Zhang, Yunlong, 2017. "Arterial signal coordination with uneven double cycling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 409-429.
    5. Papola, Natale & Fusco, Gaetano, 1998. "Maximal bandwidth problems: a new algorithm based on the properties of periodicity of the system," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 277-288, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3882-:d:249058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.