IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v43y2018i4p1317-1325.html
   My bibliography  Save this article

Comparison of Lasserre’s Measure-Based Bounds for Polynomial Optimization to Bounds Obtained by Simulated Annealing

Author

Listed:
  • Etienne de Klerk

    (Tilburg University, 5000 LE Tilburg, Netherlands; and Delft University of Technology, 2600 AA Delft, Netherlands)

  • Monique Laurent

    (Tilburg University, 5000 LE Tilburg, Netherlands; and Centrum Wiskunde & Informatica, 1090 GB Amsterdam, Netherlands)

Abstract

We consider the problem of minimizing a continuous function f over a compact set K . We compare the hierarchy of upper bounds proposed by Lasserre [Lasserre JB (2011) A new look at nonnegativity on closed sets and polynomial optimization. SIAM J. Optim. 21(3):864–885] to bounds that may be obtained from simulated annealing. We show that, when f is a polynomial and K a convex body, this comparison yields a faster rate of convergence of the Lasserre hierarchy than what was previously known in the literature.

Suggested Citation

  • Etienne de Klerk & Monique Laurent, 2018. "Comparison of Lasserre’s Measure-Based Bounds for Polynomial Optimization to Bounds Obtained by Simulated Annealing," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1317-1325, November.
  • Handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1317-1325
    DOI: 10.1287/moor.2017.0906
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0906
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Etienne de Klerk & Jean B. Lasserre & Monique Laurent & Zhao Sun, 2017. "Bound-Constrained Polynomial Optimization Using Only Elementary Calculations," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 834-853, August.
    2. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    3. de Klerk, Etienne & Hess, Roxana & Laurent, Monique, 2017. "Improved convergence rates for Lasserre-type hierarchies of upper bounds for box-constrained polynomial optimization," Other publications TiSEM 66281fb7-02b8-4d87-930b-0, Tilburg University, School of Economics and Management.
    4. Adam Tauman Kalai & Santosh Vempala, 2006. "Simulated Annealing for Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 253-266, May.
    5. Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Etienne de Klerk & Monique Laurent, 2020. "Worst-Case Examples for Lasserre’s Measure–Based Hierarchy for Polynomial Optimization on the Hypercube," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 86-98, February.
    2. de Klerk, Etienne & Badenbroek, Riley, 2022. "Simulated annealing with hit-and-run for convex optimization: complexity analysis and practical perspectives," Other publications TiSEM 323b4588-65e0-4889-a555-9, Tilburg University, School of Economics and Management.
    3. Riley Badenbroek & Etienne Klerk, 2022. "Simulated Annealing for Convex Optimization: Rigorous Complexity Analysis and Practical Perspectives," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 465-491, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Klerk, Etienne & Laurent, Monique, 2019. "A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis," Other publications TiSEM d956492f-3e25-4dda-a5e2-e, Tilburg University, School of Economics and Management.
    2. de Klerk, Etienne & Laurent, Monique, 2017. "Comparison of Lasserre's Measure-based Bounds for Polynomial Optimization to Bounds Obtained by Simulated Annealing," Other publications TiSEM 7a865ba0-bffb-43fb-a376-7, Tilburg University, School of Economics and Management.
    3. de Klerk, Etienne & Laurent, Monique, 2018. "Comparison of Lasserre's measure-based bounds for polynomial optimization to bounds obtained by simulated annealing," Other publications TiSEM 78f8f496-dc89-413e-864d-f, Tilburg University, School of Economics and Management.
    4. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    5. Etienne de Klerk & Monique Laurent, 2020. "Worst-Case Examples for Lasserre’s Measure–Based Hierarchy for Polynomial Optimization on the Hypercube," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 86-98, February.
    6. Badenbroek, Riley & de Klerk, Etienne, 2022. "Complexity analysis of a sampling-based interior point method for convex optimization," Other publications TiSEM 3d774c6d-8141-4f31-a621-5, Tilburg University, School of Economics and Management.
    7. Riley Badenbroek & Etienne Klerk, 2022. "Simulated Annealing for Convex Optimization: Rigorous Complexity Analysis and Practical Perspectives," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 465-491, August.
    8. de Klerk, Etienne & Badenbroek, Riley, 2022. "Simulated annealing with hit-and-run for convex optimization: complexity analysis and practical perspectives," Other publications TiSEM 323b4588-65e0-4889-a555-9, Tilburg University, School of Economics and Management.
    9. Huseyin Mete & Yanfang Shen & Zelda Zabinsky & Seksan Kiatsupaibul & Robert Smith, 2011. "Pattern discrete and mixed Hit-and-Run for global optimization," Journal of Global Optimization, Springer, vol. 50(4), pages 597-627, August.
    10. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.
    11. de Klerk, Etienne & Laurent, Monique, 2018. "Worst-case examples for Lasserre's measure-based hierarchy for polynomial optimization on the hypercube," Other publications TiSEM a939e3b3-0361-42c9-8263-0, Tilburg University, School of Economics and Management.
    12. Luca Anzilli & Silvio Giove, 2020. "Multi-criteria and medical diagnosis for application to health insurance systems: a general approach through non-additive measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 559-582, December.
    13. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    14. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    15. Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.
    16. Polyxeni-Margarita Kleniati & Panos Parpas & Berç Rustem, 2010. "Partitioning procedure for polynomial optimization," Journal of Global Optimization, Springer, vol. 48(4), pages 549-567, December.
    17. Laurent, M. & Rostalski, P., 2012. "The approach of moments for polynomial equations," Other publications TiSEM f08f3cd2-b83e-4bf1-9322-a, Tilburg University, School of Economics and Management.
    18. Hazan, Aurélien, 2017. "Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 589-602.
    19. Jie Wang & Victor Magron, 2021. "Exploiting term sparsity in noncommutative polynomial optimization," Computational Optimization and Applications, Springer, vol. 80(2), pages 483-521, November.
    20. Dimitris Bertsimas & Allison O'Hair, 2013. "Learning Preferences Under Noise and Loss Aversion: An Optimization Approach," Operations Research, INFORMS, vol. 61(5), pages 1190-1199, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:43:y:2018:i:4:p:1317-1325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.