IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v42y2017i1p256-276.html
   My bibliography  Save this article

Provably Near-Optimal Balancing Policies for Multi-Echelon Stochastic Inventory Control Models

Author

Listed:
  • Retsef Levi

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

  • Robin Roundy

    (Department of Mathematics, Brigham Young University, Provo, Utah 84602)

  • Van Anh Truong

    (Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

  • Xinshang Wang

    (Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

Abstract

We develop the first algorithmic approach to compute provably good ordering policies for a multi-echelon, stochastic inventory system facing correlated, nonstationary and evolving demands over a finite horizon. Specifically, we study the serial system. Our approach is computationally efficient and provides worst-case guarantees. That is, the expected cost of the algorithms is guaranteed to be within a constant factor of the optimal expected cost; depending on the assumption the constant varies between two and three. Our algorithmic approach is based on an innovative scheme to account for costs in a multi-echelon, multi-period environment, as well as repeatedly balancing between opposing cost. The cost-accounting scheme, called a cause-effect cost-accounting scheme , is significantly different from traditional cost-accounting schemes in that it reallocates costs with the goal of assigning every unit of cost to the decision that caused the cost to be incurred. We believe it will have additional applications in other multi-echelon inventory models.

Suggested Citation

  • Retsef Levi & Robin Roundy & Van Anh Truong & Xinshang Wang, 2017. "Provably Near-Optimal Balancing Policies for Multi-Echelon Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 256-276, January.
  • Handle: RePEc:inm:ormoor:v:42:y:2017:i:1:p:256-276
    DOI: 10.1287/moor.2016.0805
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2016.0805
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2016.0805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fangruo Chen & Jing-Sheng Song, 2001. "Optimal Policies for Multiechelon Inventory Problems with Markov-Modulated Demand," Operations Research, INFORMS, vol. 49(2), pages 226-234, April.
    2. Awi Federgruen & Paul Zipkin, 1984. "Computational Issues in an Infinite-Horizon, Multiechelon Inventory Model," Operations Research, INFORMS, vol. 32(4), pages 818-836, August.
    3. Retsef Levi & Ganesh Janakiraman & Mahesh Nagarajan, 2008. "A 2-Approximation Algorithm for Stochastic Inventory Control Models with Lost Sales," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 351-374, May.
    4. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    5. Alp Muharremoglu & John N. Tsitsiklis, 2008. "A Single-Unit Decomposition Approach to Multiechelon Inventory Systems," Operations Research, INFORMS, vol. 56(5), pages 1089-1103, October.
    6. Retsef Levi & Martin Pál & Robin O. Roundy & David B. Shmoys, 2007. "Approximation Algorithms for Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 284-302, May.
    7. Retsef Levi & Cong Shi, 2013. "Approximation Algorithms for the Stochastic Lot-Sizing Problem with Order Lead Times," Operations Research, INFORMS, vol. 61(3), pages 593-602, June.
    8. Kevin H. Shang & Jing-Sheng Song, 2003. "Newsvendor Bounds and Heuristic for Optimal Policies in Serial Supply Chains," Management Science, INFORMS, vol. 49(5), pages 618-638, May.
    9. Xiuli Chao & Sean X. Zhou, 2007. "Probabilistic solution and bounds for serial inventory systems with discounted and average costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 623-631, September.
    10. Fangruo Chen & Yu-Sheng Zheng, 1994. "Lower Bounds for Multi-Echelon Stochastic Inventory Systems," Management Science, INFORMS, vol. 40(11), pages 1426-1443, November.
    11. Ganesh Janakiraman & Robin O. Roundy, 2004. "Lost-Sales Problems with Stochastic Lead Times: Convexity Results for Base-Stock Policies," Operations Research, INFORMS, vol. 52(5), pages 795-803, October.
    12. Andrew J. Clark & Herbert Scarf, 2004. "Optimal Policies for a Multi-Echelon Inventory Problem," Management Science, INFORMS, vol. 50(12_supple), pages 1782-1790, December.
    13. Kaj Rosling, 1989. "Optimal Inventory Policies for Assembly Systems Under Random Demands," Operations Research, INFORMS, vol. 37(4), pages 565-579, August.
    14. Lingxiu Dong & Hau L. Lee, 2003. "Optimal Policies and Approximations for a Serial Multiechelon Inventory System with Time-Correlated Demand," Operations Research, INFORMS, vol. 51(6), pages 969-980, December.
    15. Iida, Tetsuo, 2001. "The infinite horizon non-stationary stochastic multi-echelon inventory problem and near-myopic policies," European Journal of Operational Research, Elsevier, vol. 134(3), pages 525-539, November.
    16. Retsef Levi & Robin O. Roundy & David B. Shmoys & Van Anh Truong, 2008. "Approximation Algorithms for Capacitated Stochastic Inventory Control Models," Operations Research, INFORMS, vol. 56(5), pages 1184-1199, October.
    17. Tetsuo Iida & Paul H. Zipkin, 2006. "Approximate Solutions of a Dynamic Forecast-Inventory Model," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 407-425, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    2. Andrew F. Siegel & Michael R. Wagner, 2021. "Profit Estimation Error in the Newsvendor Model Under a Parametric Demand Distribution," Management Science, INFORMS, vol. 67(8), pages 4863-4879, August.
    3. Xiuli Chao & Xiting Gong & Cong Shi & Chaolin Yang & Huanan Zhang & Sean X. Zhou, 2018. "Approximation Algorithms for Capacitated Perishable Inventory Systems with Positive Lead Times," Management Science, INFORMS, vol. 64(11), pages 5038-5061, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    2. Van-Anh Truong, 2014. "Approximation Algorithm for the Stochastic Multiperiod Inventory Problem via a Look-Ahead Optimization Approach," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1039-1056, November.
    3. Li Chen & Jing-Sheng Song & Yue Zhang, 2017. "Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights," Operations Research, INFORMS, vol. 65(5), pages 1231-1249, October.
    4. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2016. "Capacitated Multiechelon Inventory Systems: Policies and Bounds," Manufacturing & Service Operations Management, INFORMS, vol. 18(4), pages 570-584, October.
    5. Matthew J. Sobel & Volodymyr Babich, 2012. "Optimality of Myopic Policies for Dynamic Lot-Sizing Problems in Serial Production Lines with Random Yields and Autoregressive Demand," Operations Research, INFORMS, vol. 60(6), pages 1520-1536, December.
    6. Lingxiu Dong & Hau L. Lee, 2003. "Optimal Policies and Approximations for a Serial Multiechelon Inventory System with Time-Correlated Demand," Operations Research, INFORMS, vol. 51(6), pages 969-980, December.
    7. Kevin H. Shang, 2012. "Single-Stage Approximations for Optimal Policies in Serial Inventory Systems with Nonstationary Demand," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 414-422, July.
    8. Retsef Levi & Robin O. Roundy & David B. Shmoys & Van Anh Truong, 2008. "Approximation Algorithms for Capacitated Stochastic Inventory Control Models," Operations Research, INFORMS, vol. 56(5), pages 1184-1199, October.
    9. Alp Muharremoglu & John N. Tsitsiklis, 2008. "A Single-Unit Decomposition Approach to Multiechelon Inventory Systems," Operations Research, INFORMS, vol. 56(5), pages 1089-1103, October.
    10. Kevin H. Shang & Jing-Sheng Song, 2007. "Serial Supply Chains with Economies of Scale: Bounds and Approximations," Operations Research, INFORMS, vol. 55(5), pages 843-853, October.
    11. Warsing, Donald P. & Wangwatcharakul, Worawut & King, Russell E., 2019. "Computing base-stock levels for a two-stage supply chain with uncertain supply," Omega, Elsevier, vol. 89(C), pages 92-109.
    12. Xiuli Chao & Sean X. Zhou, 2009. "Optimal Policy for a Multiechelon Inventory System with Batch Ordering and Fixed Replenishment Intervals," Operations Research, INFORMS, vol. 57(2), pages 377-390, April.
    13. Guillermo Gallego & Özalp Özer, 2003. "Optimal Replenishment Policies for Multiechelon Inventory Problems Under Advance Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 157-175, February.
    14. David A. Goldberg & Martin I. Reiman & Qiong Wang, 2021. "A Survey of Recent Progress in the Asymptotic Analysis of Inventory Systems," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1718-1750, June.
    15. Diwakar Gupta & N. Selvaraju, 2006. "Performance Evaluation and Stock Allocation in Capacitated Serial Supply Systems," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 169-191, July.
    16. George Varlas & Michael Vidalis & Stelios Koukoumialos & Alexandros Diamantidis, 2021. "Optimal inventory control policies of a two-stage push–pull production inventory system with lost sales under stochastic production, transportation, and external demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 799-832, October.
    17. Peter Berling & Victor Martínez‐de‐Albéniz, 2016. "A characterization of optimal base‐stock levels for a multistage serial supply chain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(1), pages 32-46, February.
    18. Rodney P. Parker & Roman Kapuscinski, 2004. "Optimal Policies for a Capacitated Two-Echelon Inventory System," Operations Research, INFORMS, vol. 52(5), pages 739-755, October.
    19. Geert-Jan van Houtum & Alan Scheller-Wolf & Jinxin Yi, 2007. "Optimal Control of Serial Inventory Systems with Fixed Replenishment Intervals," Operations Research, INFORMS, vol. 55(4), pages 674-687, August.
    20. Qingkai Ji & Lijun Sun & Xiangpei Hu & Jing Hou, 2016. "Optimal policies of a two-echelon serial inventory system with general limited capacities," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6142-6155, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:42:y:2017:i:1:p:256-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.