IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i3p1737-1755.html
   My bibliography  Save this article

Bayesian Meta-Prior Learning Using Empirical Bayes

Author

Listed:
  • Sareh Nabi

    (Foster School of Business, University of Washington, Seattle, Washington 98195; Amazon, Seattle, Washington 98109)

  • Houssam Nassif

    (Amazon, Seattle, Washington 98109)

  • Joseph Hong

    (Amazon, Seattle, Washington 98109)

  • Hamed Mamani

    (Foster School of Business, University of Washington, Seattle, Washington 98195)

  • Guido Imbens

    (Amazon, Seattle, Washington 98109; Graduate School of Business, Stanford University, Stanford, California 94305)

Abstract

Adding domain knowledge to a learning system is known to improve results. In multiparameter Bayesian frameworks, such knowledge is incorporated as a prior. On the other hand, the various model parameters can have different learning rates in real-world problems, especially with skewed data. Two often-faced challenges in operation management and management science applications are the absence of informative priors and the inability to control parameter learning rates. In this study, we propose a hierarchical empirical Bayes approach that addresses both challenges and that can generalize to any Bayesian framework. Our method learns empirical meta-priors from the data itself and uses them to decouple the learning rates of first-order and second-order features (or any other given feature grouping) in a generalized linear model. Because the first-order features are likely to have a more pronounced effect on the outcome, focusing on learning first-order weights first is likely to improve performance and convergence time. Our empirical Bayes method clamps features in each group together and uses the deployed model’s observed data to empirically compute a hierarchical prior in hindsight. We report theoretical results for the unbiasedness, strong consistency, and optimal frequentist cumulative regret properties of our meta-prior variance estimator. We apply our method to a standard supervised learning optimization problem as well as an online combinatorial optimization problem in a contextual bandit setting implemented in an Amazon production system. During both simulations and live experiments, our method shows marked improvements, especially in cases of small traffic. Our findings are promising because optimizing over sparse data is often a challenge.

Suggested Citation

  • Sareh Nabi & Houssam Nassif & Joseph Hong & Hamed Mamani & Guido Imbens, 2022. "Bayesian Meta-Prior Learning Using Empirical Bayes," Management Science, INFORMS, vol. 68(3), pages 1737-1755, March.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:3:p:1737-1755
    DOI: 10.1287/mnsc.2021.4136
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4136
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Sham M. Kakade & Ilan Lobel & Hamid Nazerzadeh, 2013. "Optimal Dynamic Mechanism Design and the Virtual-Pivot Mechanism," Operations Research, INFORMS, vol. 61(4), pages 837-854, August.
    3. Yanzhe (Murray) Lei & Stefanus Jasin & Amitabh Sinha, 2018. "Joint Dynamic Pricing and Order Fulfillment for E-commerce Retailers," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 269-284, May.
    4. J. Michael Harrison & Nur Sunar, 2015. "Investment Timing with Incomplete Information and Multiple Means of Learning," Operations Research, INFORMS, vol. 63(2), pages 442-457, April.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Steven L. Scott, 2010. "A modern Bayesian look at the multi‐armed bandit," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(6), pages 639-658, November.
    7. Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
    8. Daniel Russo & Benjamin Van Roy, 2014. "Learning to Optimize via Posterior Sampling," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1221-1243, November.
    9. Nur Sunar & John R. Birge & Sinit Vitavasiri, 2019. "Optimal Dynamic Product Development and Launch for a Network of Customers," Operations Research, INFORMS, vol. 67(3), pages 770-790, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, He & Fang, Debin & Zhao, Chaoyang, 2024. "Retail competition among multi-type retail electric providers in social networks," Energy Economics, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    3. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    4. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    5. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    6. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    7. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
    8. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    9. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    10. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    11. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    12. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    13. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    14. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    15. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    16. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    17. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    18. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    19. Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:3:p:1737-1755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.