IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v66y2020i9p4108-4117.html
   My bibliography  Save this article

Not in the Job Description: The Commercial Activities of Academic Scientists and Engineers

Author

Listed:
  • Wesley M. Cohen

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708; National Bureau of Economic Research, Cambridge, Massachusetts 02138)

  • Henry Sauermann

    (National Bureau of Economic Research, Cambridge, Massachusetts 02138; European School of Management and Technology Berlin, 10178 Berlin, Germany)

  • Paula Stephan

    (National Bureau of Economic Research, Cambridge, Massachusetts 02138; Andrew Young School of Policy Studies, Georgia State University, Atlanta, Georgia 30302)

Abstract

Scholarly work seeking to understand academics’ commercial activities often draws on abstract notions of the academic reward system and the representative scientist. Few scholars have examined whether and how scientists’ motives to engage in commercial activities differ across fields. Similarly, efforts to understand academics’ choices have focused on three self-interested motives—recognition, challenge, and money—ignoring the potential role of the desire to have an impact on others. Using panel data for a national sample of over 2,000 academics employed at U.S. institutions, we examine how the four motives are related to commercial activity measured by patenting. We find that all four motives are correlated with patenting, but these relationships differ systematically between the life sciences, physical sciences, and engineering. These field differences are consistent with differences across fields in the rewards from commercial activities as well as in the degree of overlap between traditional and commercializable research, which affects the opportunity costs of time spent away from “traditional” academic work. We discuss potential implications for policy makers, administrators, and managers as well as for future research on the scientific enterprise.

Suggested Citation

  • Wesley M. Cohen & Henry Sauermann & Paula Stephan, 2020. "Not in the Job Description: The Commercial Activities of Academic Scientists and Engineers," Management Science, INFORMS, vol. 66(9), pages 4108-4117, September.
  • Handle: RePEc:inm:ormnsc:v:66:y:2020:i:9:p:4108-4117
    DOI: 10.287/mnsc.2019.3535
    as

    Download full text from publisher

    File URL: https://doi.org/10.287/mnsc.2019.3535
    Download Restriction: no

    File URL: https://libkey.io/10.287/mnsc.2019.3535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lam, Alice, 2011. "What motivates academic scientists to engage in research commercialization: ‘Gold’, ‘ribbon’ or ‘puzzle’?," Research Policy, Elsevier, vol. 40(10), pages 1354-1368.
    2. Buenstorf, Guido, 2009. "Is commercialization good or bad for science? Individual-level evidence from the Max Planck Society," Research Policy, Elsevier, vol. 38(2), pages 281-292, March.
    3. Hans K. Hvide & Benjamin F. Jones, 2018. "University Innovation and the Professor's Privilege," American Economic Review, American Economic Association, vol. 108(7), pages 1860-1898, July.
    4. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    5. Mowery, David C. & Nelson, Richard R. & Sampat, Bhaven N. & Ziedonis, Arvids A., 2001. "The growth of patenting and licensing by U.S. universities: an assessment of the effects of the Bayh-Dole act of 1980," Research Policy, Elsevier, vol. 30(1), pages 99-119, January.
    6. Sampat, Bhaven N. & Mowery, David C. & Ziedonis, Arvids A., 2003. "Changes in university patent quality after the Bayh-Dole act: a re-examination," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1371-1390, November.
    7. Brent Goldfarb & Gerald Marschke & Amy Smith, 2009. "Scholarship and inventive activity in the university: complements or substitutes?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(8), pages 743-756.
    8. Saul Lach & Mark Schankerman, 2008. "Incentives and invention in universities," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 403-433, June.
    9. Owen-Smith, Jason & Powell, Walter W, 2001. "To Patent or Not: Faculty Decisions and Institutional Success at Technology Transfer," The Journal of Technology Transfer, Springer, vol. 26(1-2), pages 99-114, January.
    10. Crespi, Gustavo & D'Este, Pablo & Fontana, Roberto & Geuna, Aldo, 2011. "The impact of academic patenting on university research and its transfer," Research Policy, Elsevier, vol. 40(1), pages 55-68, February.
    11. Lim, Kwanghui, 2004. "The relationship between research and innovation in the semiconductor and pharmaceutical industries (1981-1997)," Research Policy, Elsevier, vol. 33(2), pages 287-321, March.
    12. repec:ucp:bkecon:9780226750248 is not listed on IDEAS
    13. Haeussler, Carolin & Colyvas, Jeannette A., 2011. "Breaking the Ivory Tower: Academic Entrepreneurship in the Life Sciences in UK and Germany," Research Policy, Elsevier, vol. 40(1), pages 41-54, February.
    14. Timothy Besley & Maitreesh Ghatak, 2005. "Competition and Incentives with Motivated Agents," American Economic Review, American Economic Association, vol. 95(3), pages 616-636, June.
    15. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    16. Thursby, Jerry G. & Thursby, Marie C., 2011. "Has the Bayh-Dole act compromised basic research?," Research Policy, Elsevier, vol. 40(8), pages 1077-1083, October.
    17. Pierre Azoulay & Waverly Ding & Toby Stuart, 2007. "The Determinants of Faculty Patenting Behavior: Demographics or Opportunities?," NBER Chapters, in: Academic Science and Entrepreneurship: Dual Engines of Growth, National Bureau of Economic Research, Inc.
    18. Henry Sauermann & Wesley M. Cohen, 2010. "What Makes Them Tick? Employee Motives and Firm Innovation," Management Science, INFORMS, vol. 56(12), pages 2134-2153, December.
    19. Henry Sauermann & Paula Stephan, 2013. "Conflicting Logics? A Multidimensional View of Industrial and Academic Science," Organization Science, INFORMS, vol. 24(3), pages 889-909, June.
    20. Scott Stern, 2004. "Do Scientists Pay to Be Scientists?," Management Science, INFORMS, vol. 50(6), pages 835-853, June.
    21. Janet Bercovitz & Maryann Feldman, 2008. "Academic Entrepreneurs: Organizational Change at the Individual Level," Organization Science, INFORMS, vol. 19(1), pages 69-89, February.
    22. Bruno S. Frey & Reto Jegen, 2001. "Motivation Crowding Theory," Journal of Economic Surveys, Wiley Blackwell, vol. 15(5), pages 589-611, December.
    23. Pierre Azoulay & Waverly Ding & Toby Stuart, 2009. "The Impact Of Academic Patenting On The Rate, Quality And Direction Of (Public) Research Output," Journal of Industrial Economics, Wiley Blackwell, vol. 57(4), pages 637-676, December.
    24. Rajshree Agarwal & Atsushi Ohyama, 2013. "Industry or Academia, Basic or Applied? Career Choices and Earnings Trajectories of Scientists," Management Science, INFORMS, vol. 59(4), pages 950-970, April.
    25. Andrew A. Toole & Dirk Czarnitzki, 2010. "Commercializing Science: Is There a University "Brain Drain" from Academic Entrepreneurship?," Management Science, INFORMS, vol. 56(9), pages 1599-1614, September.
    26. Salter, Ammon & Salandra, Rossella & Walker, James, 2017. "Exploring preferences for impact versus publications among UK business and management academics," Research Policy, Elsevier, vol. 46(10), pages 1769-1782.
    27. Ernst Fehr & Urs Fischbacher, 2002. "Why Social Preferences Matter -- The Impact of Non-Selfish Motives on Competition, Cooperation and Incentives," Economic Journal, Royal Economic Society, vol. 112(478), pages 1-33, March.
    28. Ajay Agrawal & Rebecca Henderson, 2002. "Putting Patents in Context: Exploring Knowledge Transfer from MIT," Management Science, INFORMS, vol. 48(1), pages 44-60, January.
    29. Marie Thursby & Richard Jensen, 2001. "Proofs and Prototypes for Sale: The Licensing of University Inventions," American Economic Review, American Economic Association, vol. 91(1), pages 240-259, March.
    30. Nelson, Richard R., 2016. "The sciences are different and the differences matter," Research Policy, Elsevier, vol. 45(9), pages 1692-1701.
    31. Azoulay, Pierre & Ding, Waverly & Stuart, Toby, 2007. "The determinants of faculty patenting behavior: Demographics or opportunities?," Journal of Economic Behavior & Organization, Elsevier, vol. 63(4), pages 599-623, August.
    32. Ernst Fehr & Urs Fischbacher, "undated". "Why Social Preferences Matter - The Impact of Non-Selfish Motives on Competition," IEW - Working Papers 084, Institute for Empirical Research in Economics - University of Zurich.
    33. Fabrizio, Kira R. & Di Minin, Alberto, 2008. "Commercializing the laboratory: Faculty patenting and the open science environment," Research Policy, Elsevier, vol. 37(5), pages 914-931, June.
    34. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    35. Roach, Michael & Sauermann, Henry, 2010. "A taste for science? PhD scientists' academic orientation and self-selection into research careers in industry," Research Policy, Elsevier, vol. 39(3), pages 422-434, April.
    36. Thursby, Jerry G & Jensen, Richard & Thursby, Marie C, 2001. "Objectives, Characteristics and Outcomes of University Licensing: A Survey of Major U.S. Universities," The Journal of Technology Transfer, Springer, vol. 26(1-2), pages 59-72, January.
    37. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    38. Pablo D’Este & Irene Ramos-Vielba & Richard Woolley & Nabil Amara, 2018. "How do researchers generate scientific and societal impacts? Toward an analytical and operational framework," Science and Public Policy, Oxford University Press, vol. 45(6), pages 752-763.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xue & Fan, Li-Wei & Zhang, Hongyan, 2023. "Policies for enhancing patent quality: Evidence from renewable energy technology in China," Energy Policy, Elsevier, vol. 180(C).
    2. S. Di Luozzo & A. Fronzetti Colladon & M. M. Schiraldi, 2024. "Decoding excellence: Mapping the demand for psychological traits of operations and supply chain professionals through text mining," Papers 2403.17546, arXiv.org.
    3. Silvia Dalla Fontana & Ramana Nanda, 2023. "Innovating to Net Zero: Can Venture Capital and Start-Ups Play a Meaningful Role?," Entrepreneurship and Innovation Policy and the Economy, University of Chicago Press, vol. 2(1), pages 79-105.
    4. Giovanni Abramo & Francesca Apponi & Ciriaco Andrea D’Angelo, 2024. "The moderating role of the territorial research infrastructure on the geographic proximity effect in research collaborations: a regional-based view," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3149-3168, June.
    5. Gabriele Angori & Chiara Marzocchi & Laura Ramaciotti & Ugo Rizzo, 2024. "A patent-based analysis of the evolution of basic, mission-oriented, and applied research in European universities," The Journal of Technology Transfer, Springer, vol. 49(2), pages 609-641, April.
    6. Chiara Franzoni & Paula Stephan & Reinhilde Veugelers, 2022. "Funding Risky Research," Entrepreneurship and Innovation Policy and the Economy, University of Chicago Press, vol. 1(1), pages 103-133.
    7. Llopis, Oscar & D'Este, Pablo & McKelvey, Maureen & Yegros, Alfredo, 2022. "Navigating multiple logics: Legitimacy and the quest for societal impact in science," Technovation, Elsevier, vol. 110(C).
    8. Bergemann, Dirk & Ottaviani, Marco, 2021. "Information Markets and Nonmarkets," CEPR Discussion Papers 16459, C.E.P.R. Discussion Papers.
    9. Blandinieres, Florence & Pellens, Maikel, 2021. "Scientist's industry engagement and the research agenda: Evidence from Germany," ZEW Discussion Papers 21-001, ZEW - Leibniz Centre for European Economic Research.
    10. Wei Zhou & Min Jiang & Hailunbeier Li, 2023. "Explaining academic entrepreneurial motivation in China: the role of regional policy, organizational support, and individual characteristics," Small Business Economics, Springer, vol. 61(3), pages 1357-1378, October.
    11. Martínez, Catalina & Parlane, Sarah, 2023. "Academic scientists in corporate R&D: A theoretical model," Research Policy, Elsevier, vol. 52(5).
    12. Giovanni Abramo & Ciriaco Andrea D’Angelo, 2022. "Drivers of academic engagement in public–private research collaboration: an empirical study," The Journal of Technology Transfer, Springer, vol. 47(6), pages 1861-1884, December.
    13. Ruoying Zhou & Ning Baines, 2024. "To what extent do universities’ formal and informal knowledge exchange activities interact: evidence from UK HE-BCI survey," The Journal of Technology Transfer, Springer, vol. 49(4), pages 1145-1175, August.
    14. David H. Hsu & Jeffrey M. Kuhn, 2023. "Academic stars and licensing experience in university technology commercialization," Strategic Management Journal, Wiley Blackwell, vol. 44(3), pages 887-905, March.
    15. Damrich, Sebastian & Kealey, Terence & Ricketts, Martin, 2022. "Crowding in and crowding out within a contribution good model of research," Research Policy, Elsevier, vol. 51(1).
    16. Kyle R. Myers & Wei Yang Tham & Jerry Thursby & Marie Thursby & Nina Cohodes & Karim Lakhani & Rachel Mural & Yilun Xu, 2023. "New Facts and Data about Professors and their Research," Papers 2312.01442, arXiv.org.
    17. Koehler, Maximilian & Sauermann, Henry, 2024. "Algorithmic management in scientific research," Research Policy, Elsevier, vol. 53(4).
    18. Sheer, Lia, 2022. "Sitting on the Fence: Integrating the two worlds of scientific discovery and invention within the firm," Research Policy, Elsevier, vol. 51(7).
    19. Brooks, Chris & Schopohl, Lisa & Walker, James T., 2023. "Comparing perceptions of the impact of journal rankings between fields," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 90(C).
    20. Kyle Myers & Wei Yang Tham, 2023. "Money, Time, and Grant Design," Papers 2312.06479, arXiv.org.
    21. Chollet, Barthélemy & Revet, Karine, 2023. "Digging deep or scratching the surface? Contingent innovation outcomes of seeking advice from geographically distant ties," Technological Forecasting and Social Change, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    2. Ani Gerbin & Mateja Drnovsek, 2016. "Determinants and public policy implications of academic-industry knowledge transfer in life sciences: a review and a conceptual framework," The Journal of Technology Transfer, Springer, vol. 41(5), pages 979-1076, October.
    3. Cornelia Lawson, 2013. "Academic patenting: the importance of industry support," The Journal of Technology Transfer, Springer, vol. 38(4), pages 509-535, August.
    4. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Lawson, Cornelia, 2015. "The double-edged sword of industry collaboration: Evidence from engineering academics in the UK," Research Policy, Elsevier, vol. 44(6), pages 1160-1175.
    5. Ouellette, Lisa Larrimore & Tutt, Andrew, 2020. "How do patent incentives affect university researchers?," International Review of Law and Economics, Elsevier, vol. 61(C).
    6. Walter, Sascha G. & Schmidt, Arne & Walter, Achim, 2016. "Patenting rationales of academic entrepreneurs in weak and strong organizational regimes," Research Policy, Elsevier, vol. 45(2), pages 533-545.
    7. Soo Jeung Lee, 2019. "Academic entrepreneurship: exploring the effects of academic patenting activity on publication and collaboration among heterogeneous researchers in South Korea," The Journal of Technology Transfer, Springer, vol. 44(6), pages 1993-2013, December.
    8. Alan Hughes & Michael Kitson, 2012. "Pathways to Impact and the Strategic Role of Universities," Working Papers wp435, Centre for Business Research, University of Cambridge.
    9. Nelson, Andrew J., 2012. "Putting university research in context: Assessing alternative measures of production and diffusion at Stanford," Research Policy, Elsevier, vol. 41(4), pages 678-691.
    10. Aydemir, Nisa Yazici & Huang, Wan-Ling & Welch, Eric W., 2022. "Late-stage academic entrepreneurship: Explaining why academic scientists collaborate with industry to commercialize their patents," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    11. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    12. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.
    13. Tartari, Valentina & Salter, Ammon, 2015. "The engagement gap:," Research Policy, Elsevier, vol. 44(6), pages 1176-1191.
    14. Tartari, Valentina & Perkmann, Markus & Salter, Ammon, 2014. "In good company: The influence of peers on industry engagement by academic scientists," Research Policy, Elsevier, vol. 43(7), pages 1189-1203.
    15. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    16. Crespi, Gustavo & D'Este, Pablo & Fontana, Roberto & Geuna, Aldo, 2011. "The impact of academic patenting on university research and its transfer," Research Policy, Elsevier, vol. 40(1), pages 55-68, February.
    17. Véronique Schaeffer & Sıla Öcalan-Özel & Julien Pénin, 2020. "The complementarities between formal and informal channels of university–industry knowledge transfer: a longitudinal approach," The Journal of Technology Transfer, Springer, vol. 45(1), pages 31-55, February.
    18. Hottenrott, Hanna & Thorwarth, Susanne, 2010. "Industry funding of university research and scientific productivity," ZEW Discussion Papers 10-105, ZEW - Leibniz Centre for European Economic Research.
    19. Fabiano, Gianluca & Marcellusi, Andrea & Favato, Giampiero, 2021. "R versus D, from knowledge creation to value appropriation: Ownership of patents filed by European biotechnology founders," Technovation, Elsevier, vol. 108(C).
    20. Christian Fisch & Tobias Hassel & Philipp Sandner & Joern Block, 2015. "University patenting: a comparison of 300 leading universities worldwide," The Journal of Technology Transfer, Springer, vol. 40(2), pages 318-345, April.

    More about this item

    Keywords

    technology commercialization; motivation and incentives; academia-industry interface; academic entrepreneurship; economics of science; research; innovation;
    All these keywords.

    JEL classification:

    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • M5 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Personnel Economics
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:66:y:2020:i:9:p:4108-4117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.