IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v62y2016i7p2129-2147.html
   My bibliography  Save this article

Scheduling Homogeneous Impatient Customers

Author

Listed:
  • Achal Bassamboo

    (Kellogg School of Management, Northwestern University, Evanston, Illinois 60208)

  • Ramandeep Singh Randhawa

    (Marshall School of Business, University of Southern California, Los Angeles, California 90089)

Abstract

Customer impatience has become an integral component of analyzing services, especially in the context of call centers. Typically, when customers arrive to such systems, they seem identical or homogeneous; however, from the system’s perspective, as they wait in the queue, their residual willingness to wait changes. For instance, a customer who has already waited for 10 minutes may have a different residual willingness to wait compared with a customer who has only waited for 1 minute. In this manner, as time progresses, customers become differentiated on their estimated patience levels. We exploit this dimension of customer heterogeneity to construct scheduling policies in overloaded systems that dynamically prioritize customers based on their time in queue to optimize any given system performance metric. Interestingly, the optimal policy has a very simple structure, and we find that implementing it can lead to significant improvements over the first-come, first-served policy. This paper was accepted by Noah Gans, stochastic models and simulation.

Suggested Citation

  • Achal Bassamboo & Ramandeep Singh Randhawa, 2016. "Scheduling Homogeneous Impatient Customers," Management Science, INFORMS, vol. 62(7), pages 2129-2147, July.
  • Handle: RePEc:inm:ormnsc:v:62:y:2016:i:7:p:2129-2147
    DOI: 10.1287/mnsc.2015.2241
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2015.2241
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2015.2241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Itai Gurvich & Ward Whitt, 2010. "Service-Level Differentiation in Many-Server Service Systems via Queue-Ratio Routing," Operations Research, INFORMS, vol. 58(2), pages 316-328, April.
    2. Rami Atar & Haya Kaspi & Nahum Shimkin, 2014. "Fluid Limits for Many-Server Systems with Reneging Under a Priority Policy," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 672-696, August.
    3. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    4. Samim Ghamami & Amy R. Ward, 2013. "Dynamic Scheduling of a Two-Server Parallel Server System with Complete Resource Pooling and Reneging in Heavy Traffic: Asymptotic Optimality of a Two-Threshold Policy," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 761-824, November.
    5. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    6. Achal Bassamboo & Ramandeep S. Randhawa, 2010. "On the Accuracy of Fluid Models for Capacity Sizing in Queueing Systems with Impatient Customers," Operations Research, INFORMS, vol. 58(5), pages 1398-1413, October.
    7. Achal Bassamboo & Ramandeep S. Randhawa & Assaf Zeevi, 2010. "Capacity Sizing Under Parameter Uncertainty: Safety Staffing Principles Revisited," Management Science, INFORMS, vol. 56(10), pages 1668-1686, October.
    8. Ward Whitt, 2006. "Fluid Models for Multiserver Queues with Abandonments," Operations Research, INFORMS, vol. 54(1), pages 37-54, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diwas S. KC & Bradley R. Staats & Maryam Kouchaki & Francesca Gino, 2020. "Task Selection and Workload: A Focus on Completing Easy Tasks Hurts Performance," Management Science, INFORMS, vol. 66(10), pages 4397-4416, October.
    2. Zhenghua Long & Nahum Shimkin & Hailun Zhang & Jiheng Zhang, 2020. "Dynamic Scheduling of Multiclass Many-Server Queues with Abandonment: The Generalized cμ / h Rule," Operations Research, INFORMS, vol. 68(4), pages 1128-1230, July.
    3. Maria R. Ibanez & Jonathan R. Clark & Robert S. Huckman & Bradley R. Staats, 2018. "Discretionary Task Ordering: Queue Management in Radiological Services," Management Science, INFORMS, vol. 64(9), pages 4389-4407, September.
    4. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    5. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    6. Zhenghua Long & Jiheng Zhang, 2019. "Virtual allocation policies for many-server queues with abandonment," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 399-451, December.
    7. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    8. Xu Yong & Liu Jian & Ma Baomei & Zhang Shuai, 2018. "Service Mechanism and Pricing Based on Fairness Preference of Customers in Queuing System," Journal of Systems Science and Information, De Gruyter, vol. 6(6), pages 481-494, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander L. Stolyar & Tolga Tezcan, 2011. "Shadow-Routing Based Control of Flexible Multiserver Pools in Overload," Operations Research, INFORMS, vol. 59(6), pages 1427-1444, December.
    2. Zhenghua Long & Nahum Shimkin & Hailun Zhang & Jiheng Zhang, 2020. "Dynamic Scheduling of Multiclass Many-Server Queues with Abandonment: The Generalized cμ / h Rule," Operations Research, INFORMS, vol. 68(4), pages 1128-1230, July.
    3. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    4. Adan, Ivo J.B.F. & Boon, Marko A.A. & Weiss, Gideon, 2019. "Design heuristic for parallel many server systems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 259-277.
    5. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    6. Tolga Tezcan & Jiheng Zhang, 2014. "Routing and Staffing in Customer Service Chat Systems with Impatient Customers," Operations Research, INFORMS, vol. 62(4), pages 943-956, August.
    7. Achal Bassamboo & Ramandeep S. Randhawa, 2010. "On the Accuracy of Fluid Models for Capacity Sizing in Queueing Systems with Impatient Customers," Operations Research, INFORMS, vol. 58(5), pages 1398-1413, October.
    8. Jeunghyun Kim & Ramandeep S. Randhawa & Amy R. Ward, 2018. "Dynamic Scheduling in a Many-Server, Multiclass System: The Role of Customer Impatience in Large Systems," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 285-301, May.
    9. Zhenghua Long & Jiheng Zhang, 2019. "Virtual allocation policies for many-server queues with abandonment," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 399-451, December.
    10. Achal Bassamboo & Ramandeep S. Randhawa & Assaf Zeevi, 2010. "Capacity Sizing Under Parameter Uncertainty: Safety Staffing Principles Revisited," Management Science, INFORMS, vol. 56(10), pages 1668-1686, October.
    11. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    12. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    13. Guodong Pang & Ohad Perry, 2015. "A Logarithmic Safety Staffing Rule for Contact Centers with Call Blending," Management Science, INFORMS, vol. 61(1), pages 73-91, January.
    14. Shuangchi He, 2020. "Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient," Operations Research, INFORMS, vol. 68(4), pages 1265-1284, July.
    15. Ward Whitt, 2006. "Staffing a Call Center with Uncertain Arrival Rate and Absenteeism," Production and Operations Management, Production and Operations Management Society, vol. 15(1), pages 88-102, March.
    16. Junfei Huang & Avishai Mandelbaum & Hanqin Zhang & Jiheng Zhang, 2017. "Refined Models for Efficiency-Driven Queues with Applications to Delay Announcements and Staffing," Operations Research, INFORMS, vol. 65(5), pages 1380-1397, October.
    17. Wyean Chan & Ger Koole & Pierre L'Ecuyer, 2014. "Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 544-560, October.
    18. J. G. Dai & Shuangchi He, 2010. "Customer Abandonment in Many-Server Queues," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 347-362, May.
    19. Jun Luo & Jiheng Zhang, 2013. "Staffing and Control of Instant Messaging Contact Centers," Operations Research, INFORMS, vol. 61(2), pages 328-343, April.
    20. Kawai, Yosuke & Takagi, Hideaki, 2015. "Fluid approximation analysis of a call center model with time-varying arrivals and after-call work," Operations Research Perspectives, Elsevier, vol. 2(C), pages 81-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:62:y:2016:i:7:p:2129-2147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.