IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v43y1997i1p80-87.html
   My bibliography  Save this article

The Lagged PSA for Estimating Peak Congestion in Multiserver Markovian Queues with Periodic Arrival Rates

Author

Listed:
  • Linda V. Green

    (Graduate School of Business, Columbia University, New York, New York 10027)

  • Peter J. Kolesar

    (Graduate School of Business, Columbia University, New York, New York 10027)

Abstract

We propose using a modification of the simple peak hour approximation (SPHA) for estimating peak congestion in multiserver queueing systems with exponential service times and time-varying periodic Poisson arrivals. This lagged pointwise stationary approximation (lagged PSA) is obtained by first estimating the time of the actual peak congestion by the time of peak congestion in an infinite server model and then substituting the arrival rate at this time in the corresponding stationary finite server model. We show that the lagged PSA is always more accurate than the SPHA and results in dramatically smaller errors when average service times are greater than a half an hour (based on a 24 hour period). More importantly, the lagged PSA reliably identifies proper staffing levels to meet targeted performance levels to keep congestion low.

Suggested Citation

  • Linda V. Green & Peter J. Kolesar, 1997. "The Lagged PSA for Estimating Peak Congestion in Multiserver Markovian Queues with Periodic Arrival Rates," Management Science, INFORMS, vol. 43(1), pages 80-87, January.
  • Handle: RePEc:inm:ormnsc:v:43:y:1997:i:1:p:80-87
    DOI: 10.1287/mnsc.43.1.80
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.43.1.80
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.43.1.80?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izady, Navid & Worthington, Dave, 2012. "Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments," European Journal of Operational Research, Elsevier, vol. 219(3), pages 531-540.
    2. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    3. Linda V. Green & Peter J. Kolesar & João Soares, 2001. "Improving the Sipp Approach for Staffing Service Systems That Have Cyclic Demands," Operations Research, INFORMS, vol. 49(4), pages 549-564, August.
    4. Wall, A.D. & Worthington, D.J., 2007. "Time-dependent analysis of virtual waiting time behaviour in discrete time queues," European Journal of Operational Research, Elsevier, vol. 178(2), pages 482-499, April.
    5. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    6. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.
    7. J. G. Dai & Pengyi Shi, 2017. "A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management," Operations Research, INFORMS, vol. 65(2), pages 514-536, April.
    8. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    9. Gabriel Zayas-Cabán & Mark E. Lewis, 2020. "Admission control in a two-class loss system with periodically varying parameters and abandonments," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 175-210, February.
    10. Wang, Haiyan & Olsen, Tava Lennon & Liu, Guiqing, 2018. "Service capacity competition with peak arrivals and delay sensitive customers," Omega, Elsevier, vol. 77(C), pages 80-95.
    11. Alnowibet, Khalid Abdulaziz & Perros, Harry, 2009. "Nonstationary analysis of the loss queue and of queueing networks of loss queues," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1015-1030, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:43:y:1997:i:1:p:80-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.