IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v35y1989i4p459-471.html
   My bibliography  Save this article

A Dynamic Programming Approach to Stochastic Assembly Line Balancing

Author

Listed:
  • Robert L. Carraway

    (Colgate Darden Graduate School of Business Administration, University of Virginia, Charlottesville, Virginia 22906-6550)

Abstract

Consider the problem of minimizing the required number of work stations on an assembly line for a given cycle time when the processing times are independent, normally distributed random variables. The assignment of tasks to stations is subject to precedence conditions, caused by technological constraints, and a lower bound on the probability of the work at any station being completed within the cycle time. We present two dynamic programming (DP) algorithms for this problem, each guaranteed to be optimal under a certain mild condition. Our general approach is based on the Held et al. (Held, M., R. M. Karp, R. Shareshian. 1963. Assembly-line-balancing-dynamic programming with precedence constraints. Oper. Res. 11 442--459.) formulation of the deterministic line balancing problem and thus represents a modification of previous work by Kao (Kao, E. P. C. 1976. A preference order dynamic program for stochastic assembly line balancing. Management Sci. 22 1097--1104.). Computational results indicate that both algorithms significantly outperform an alternative DP approach suggested by Henig (Henig, M. I. 1986. Extensions of the dynamic programming method in the deterministic and stochastic assembly-line balancing problems. Comput. Oper. Res. 13 443--449.).

Suggested Citation

  • Robert L. Carraway, 1989. "A Dynamic Programming Approach to Stochastic Assembly Line Balancing," Management Science, INFORMS, vol. 35(4), pages 459-471, April.
  • Handle: RePEc:inm:ormnsc:v:35:y:1989:i:4:p:459-471
    DOI: 10.1287/mnsc.35.4.459
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.35.4.459
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.35.4.459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bentefouet, Frank & Nembhard, David A., 2013. "Optimal flow-line conditions with worker variability," International Journal of Production Economics, Elsevier, vol. 141(2), pages 675-684.
    2. Diefenbach, Johannes & Stolletz, Raik, 2022. "Stochastic assembly line balancing: General bounds and reliability-based branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 302(2), pages 589-605.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    4. Kenneth H. Doerr & Theodore D. Klastorin & Michael J. Magazine, 2000. "Synchronous Unpaced Flow Lines with Worker Differences and Overtime Cost," Management Science, INFORMS, vol. 46(3), pages 421-435, March.
    5. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    6. Suresh Chand & Ting Zeng, 2001. "A Comparison of U-Line and Straight-Line Performances Under Stochastic Task Times," Manufacturing & Service Operations Management, INFORMS, vol. 3(2), pages 138-150, January.
    7. Chiang, Wen-Chyuan & Urban, Timothy L., 2006. "The stochastic U-line balancing problem: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1767-1781, December.
    8. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    9. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    10. Franco Guerriero & John Miltenburg, 2003. "The stochastic U‐line balancing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(1), pages 31-57, February.
    11. Marcus Ritt & Alysson M. Costa & Cristóbal Miralles, 2016. "The assembly line worker assignment and balancing problem with stochastic worker availability," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 907-922, February.
    12. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    13. Sunder Kekre & Uday S. Rao & Jayashankar M. Swaminathan & Jun Zhang, 2003. "Reconfiguring a Remanufacturing Line at Visteon, Mexico," Interfaces, INFORMS, vol. 33(6), pages 30-43, December.
    14. Urban, Timothy L. & Chiang, Wen-Chyuan, 2006. "An optimal piecewise-linear program for the U-line balancing problem with stochastic task times," European Journal of Operational Research, Elsevier, vol. 168(3), pages 771-782, February.
    15. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    16. Daniel Leitold & Agnes Vathy-Fogarassy & Janos Abonyi, 2019. "Empirical working time distribution-based line balancing with integrated simulated annealing and dynamic programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 455-473, June.
    17. Wen-Chyuan Chiang & Timothy L. Urban & Chunyong Luo, 2016. "Balancing stochastic two-sided assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6232-6250, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:35:y:1989:i:4:p:459-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.