IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v18y1972i12pb676-b690.html
   My bibliography  Save this article

A Recursive Optimization and Simulation Approach to Analysis with an Application to Transportation Systems

Author

Listed:
  • Richard L. Nolan

    (Harvard University)

  • Michael G. Sovereign

    (Naval Postgraduate School, Monterey, California)

Abstract

Modeling large systems with either an optimization or a simulation method has several disadvantages. Simulation is usually expensive if adequate detail and experimental designs are employed. Complete detail in optimization models may press the bounds of computability. A recursive approach integrating both types of models is presented. The recursive approach involves, an allocation of resources by optimization models at an aggregate level. At this level computation is not difficult and broad alternatives can be easily explored. Simulation models can then be designed to address detailed questions of productivity of resources, discreteness, and complex relationships. The simulation can use the particular schedules generated by the optimization so that experimental designs can be limited in size. The revised productivities can then be input to the optimization model for a more refined optimal solution. The recursive approach has been applied to the strategic mobility system problem in reaching decisions for the size of transportation forces for the DOD. A linear programming model provides optimal allocation of overall mobility system vehicles and schedules. Two simulation models, an airlift model and a sealift model, provide productivity estimates and tests of capability.

Suggested Citation

  • Richard L. Nolan & Michael G. Sovereign, 1972. "A Recursive Optimization and Simulation Approach to Analysis with an Application to Transportation Systems," Management Science, INFORMS, vol. 18(12), pages 676-690, August.
  • Handle: RePEc:inm:ormnsc:v:18:y:1972:i:12:p:b676-b690
    DOI: 10.1287/mnsc.18.12.B676
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.18.12.B676
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.18.12.B676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azadivar, F. & Talavage, J., 1980. "Optimization of stochastic simulation models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 22(3), pages 231-241.
    2. J. M. Blin, 1977. "Development of a Corporate Information System," Discussion Papers 304, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Waiman Cheung & Lawrence C. Leung & Y. M. Wong, 2001. "Strategic Service Network Design for DHL Hong Kong," Interfaces, INFORMS, vol. 31(4), pages 1-14, August.
    4. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    5. Byrne, M. D. & Bakir, M. A., 1999. "Production planning using a hybrid simulation - analytical approach," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 305-311, March.
    6. Azadivar, Farhad & Lee, Young-Hae, 1988. "Optimization of discrete variable stochastic systems by computer simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 30(4), pages 331-345.
    7. Throsby, C.D., 1973. "New Methodologies in Agricultural Production Economics: a Review," 1973 Conference, August 19-30, 1973, São Paulo, Brazil 181385, International Association of Agricultural Economists.
    8. Byrne, M.D. & Hossain, M.M., 2005. "Production planning: An improved hybrid approach," International Journal of Production Economics, Elsevier, vol. 93(1), pages 225-229, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:18:y:1972:i:12:p:b676-b690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.