IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v12y1966i5p359-370.html
   My bibliography  Save this article

On Nonterminating Stochastic Games

Author

Listed:
  • A. J. Hoffman

    (IBM Watson Research Center)

  • R. M. Karp

    (IBM Watson Research Center)

Abstract

A stochastic game is played in a sequence of steps; at each step the play is said to be in some state i, chosen from a finite collection of states. If the play is in state i, the first player chooses move k and the second player chooses move l, then the first player receives a reward a kl i , and, with probability p kl ij , the next state is j. The concept of stochastic games was introduced by Shapley with the proviso that, with probability 1, play terminates. The authors consider the case when play never terminates, and show properties of such games and offer a convergent algorithm for their solution. In the special case when one of the players is a dummy, the nonterminating stochastic game reduces to a Markovian decision process, and the present work can be regarded as the extension to a game theoretic context of known results on Markovian decision processes.

Suggested Citation

  • A. J. Hoffman & R. M. Karp, 1966. "On Nonterminating Stochastic Games," Management Science, INFORMS, vol. 12(5), pages 359-370, January.
  • Handle: RePEc:inm:ormnsc:v:12:y:1966:i:5:p:359-370
    DOI: 10.1287/mnsc.12.5.359
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.12.5.359
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.12.5.359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Endre Boros & Khaled Elbassioni & Vladimir Gurvich & Kazuhisa Makino, 2013. "On Canonical Forms for Zero-Sum Stochastic Mean Payoff Games," Dynamic Games and Applications, Springer, vol. 3(2), pages 128-161, June.
    2. Johannes H�rner & Satoru Takahashi & Nicolas Vieille, 2012. "On the Limit Equilibrium Payoff Set in Repeated and Stochastic Games," Working Papers 1397, Princeton University, Department of Economics, Econometric Research Program..
    3. Johannes Horner & Takuo Sugaya & Satoru Takahashi & Nicolas Vieille, 2009. "Recursive Methods in Discounted Stochastic Games: An Algorithm for delta Approaching 1 and a Folk Theorem," Cowles Foundation Discussion Papers 1742, Cowles Foundation for Research in Economics, Yale University, revised Aug 2010.
    4. Jayakumar Subramanian & Amit Sinha & Aditya Mahajan, 2023. "Robustness and Sample Complexity of Model-Based MARL for General-Sum Markov Games," Dynamic Games and Applications, Springer, vol. 13(1), pages 56-88, March.
    5. Krishnendu Chatterjee & Rupak Majumdar & Thomas Henzinger, 2008. "Stochastic limit-average games are in EXPTIME," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(2), pages 219-234, June.
    6. Hörner, Johannes & Takahashi, Satoru & Vieille, Nicolas, 2014. "On the limit perfect public equilibrium payoff set in repeated and stochastic games," Games and Economic Behavior, Elsevier, vol. 85(C), pages 70-83.
    7. Frederic H. Murphy, 1972. "Row Dropping Procedures for Cutting Plane Algorithms," Discussion Papers 16, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    8. Endre Boros & Khaled Elbassioni & Vladimir Gurvich & Kazuhisa Makino, 2018. "A Potential Reduction Algorithm for Two-Person Zero-Sum Mean Payoff Stochastic Games," Dynamic Games and Applications, Springer, vol. 8(1), pages 22-41, March.
    9. S. K. Neogy & Prasenjit Mondal & Abhijit Gupta & Debasish Ghorui, 2018. "On Solving Mean Payoff Games Using Pivoting Algorithms," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-26, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:12:y:1966:i:5:p:359-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.