IDEAS home Printed from https://ideas.repec.org/a/inm/orited/v20y2020i2p57-72.html
   My bibliography  Save this article

Data Analytics Research-Informed Teaching in a Digital Technologies Curriculum

Author

Listed:
  • Jing Lu

    (Department of Digital Futures, University of Winchester Business School, Winchester SO22 5HT, United Kingdom)

Abstract

In the business environment, the goal of data analytics can be characterized as improving decision making and its links to big data and other data-driven technologies. In UK higher education, degree apprenticeships are business-led and government-supported nationally recognized qualifications, where delivery is tailored to partner employer requirements. This paper focuses on the development of the data analytics specialism of the BSc Digital and Technology Solutions degree apprenticeship at the University of Winchester Business School informed by current research and practice. A data-driven analytical framework is first proposed to provide an overarching methodology for extracting knowledge and insights from (big) data. It covers key components of the analytics lifecycle from data management, data preprocessing, and integration through data modeling and business intelligence to insight management. Software tools related to collecting, cleansing, processing, analyzing, and visualizing data have been systematically discussed to provide the technological dimension. The methodology is then applied to the development of the specialist modules in data analytics, which represent the core thematic structure of the degree apprenticeship pathway. The culmination of the paper is an evaluation of the educational innovation of this digital technologies curriculum, highlighting teaching, learning, and assessment from the perspective of data-analytic thinking.

Suggested Citation

  • Jing Lu, 2020. "Data Analytics Research-Informed Teaching in a Digital Technologies Curriculum," INFORMS Transactions on Education, INFORMS, vol. 20(2), pages 57-72, January.
  • Handle: RePEc:inm:orited:v:20:y:2020:i:2:p:57-72
    DOI: 10.1287/ited.2019.0215
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ited.2019.0215
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ited.2019.0215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    2. Coleen R. Wilder & Ceyhun O. Ozgur, 2015. "Business Analytics Curriculum for Undergraduate Majors," INFORMS Transactions on Education, INFORMS, vol. 15(2), pages 180-187, January.
    3. Wang, Yichuan & Kung, LeeAnn & Byrd, Terry Anthony, 2018. "Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 3-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandra Krstikj & Juan Sosa Godina & Luciano García Bañuelos & Omar Israel González Peña & Héctor Nahún Quintero Milián & Pedro Daniel Urbina Coronado & Ana Yael Vanoye García, 2022. "Analysis of Competency Assessment of Educational Innovation in Upper Secondary School and Higher Education: A Mapping Review," Sustainability, MDPI, vol. 14(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    2. Meadows, Maureen & Merendino, Alessandro & Dibb, Sally & Garcia-Perez, Alexeis & Hinton, Matthew & Papagiannidis, Savvas & Pappas, Ilias & Wang, Huamao, 2022. "Tension in the data environment: How organisations can meet the challenge," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Alberto Bertello & Alberto Ferraris & Stefano Bresciani & Paola Bernardi, 2021. "Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 25(4), pages 1035-1055, December.
    4. Brewis, Claire & Dibb, Sally & Meadows, Maureen, 2023. "Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    5. Aljumah, Ahmad Ibrahim & Nuseir, Mohammed T. & Alam, Md. Mahmudul, 2021. "Traditional Marketing Analytics, Big Data Analytics, Big Data System Quality and the Success of New Product Development," OSF Preprints 9auec, Center for Open Science.
    6. Elisabetta Raguseo & Claudio Vitari & Federico Pigni, 2020. "Profiting from big data analytics: The moderating roles of industry concentration and firm size," Post-Print hal-03032504, HAL.
    7. Liedong, Tahiru Azaaviele & Rajwani, Tazeeb & Lawton, Thomas C., 2020. "Information and nonmarket strategy: Conceptualizing the interrelationship between big data and corporate political activity," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    8. Di Vaio, Assunta & Palladino, Rosa & Hassan, Rohail & Escobar, Octavio, 2020. "Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review," Journal of Business Research, Elsevier, vol. 121(C), pages 283-314.
    9. Raguseo, Elisabetta & Vitari, Claudio & Pigni, Federico, 2020. "Profiting from big data analytics: The moderating roles of industry concentration and firm size," International Journal of Production Economics, Elsevier, vol. 229(C).
    10. Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
    11. Aljumah, Ahmad Ibrahim & Nuseir, Mohammed T. & Alam, Md. Mahmudul, 2021. "Organizational Performance and Capabilities to Analyze Big Data: Do the Ambidexterity and Business Value of Big Data Analytics Matter?," OSF Preprints an8er, Center for Open Science.
    12. Le, Hai & Vu, Kim-Chi, 2024. "Big data analytics and environmental performance: The moderating role of internationalization," Finance Research Letters, Elsevier, vol. 64(C).
    13. Korayim, Diana & Chotia, Varun & Jain, Girish & Hassan, Sharfa & Paolone, Francesco, 2024. "How big data analytics can create competitive advantage in high-stake decision forecasting? The mediating role of organizational innovation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    14. Elisabetta Raguseo & Claudio Vitari & Federico Pigni, 2020. "Profiting from big data analytics: The moderating roles of industry concentration and firm size," Grenoble Ecole de Management (Post-Print) hal-03032504, HAL.
    15. Tabesh, Pooya & Mousavidin, Elham & Hasani, Sona, 2019. "Implementing big data strategies: A managerial perspective," Business Horizons, Elsevier, vol. 62(3), pages 347-358.
    16. Ashrafi, Amir & Zareravasan, Ahad, 2022. "An ambidextrous approach on the business analytics-competitive advantage relationship: Exploring the moderating role of business analytics strategy," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    17. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    18. Huynh, Minh-Tay & Nippa, Michael & Aichner, Thomas, 2023. "Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    19. Keshav Singh Rawat & Sandeep Kumar Sood, 2021. "Emerging trends and global scope of big data analytics: a scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(4), pages 1371-1396, August.
    20. Natallia Pashkevich & Darek Haftor & Mikael Karlsson & Soumitra Chowdhury, 2019. "Sustainability through the Digitalization of Industrial Machines: Complementary Factors of Fuel Consumption and Productivity for Forklifts with Sensors," Sustainability, MDPI, vol. 11(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orited:v:20:y:2020:i:2:p:57-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.