IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v32y2021i2p541-560.html
   My bibliography  Save this article

Mining Bilateral Reviews for Online Transaction Prediction: A Relational Topic Modeling Approach

Author

Listed:
  • Jiawei Chen

    (School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China)

  • Yinghui (Catherine) Yang

    (Graduate School of Management, University of California, Davis, California 95616)

  • Hongyan Liu

    (School of Economics and Management, Tsinghua University, Beijing 100084, China)

Abstract

On most e-commerce platforms, reviews are often written by buyers to evaluate sellers or products offered by sellers. In recent years, more and more platforms allowing both buyers and sellers to write reviews for each other have emerged. These bilateral reviews are important information sources in the decision-making process of both buyers and sellers but have not been properly investigated in the literature before. We develop a comprehensive relational topic modeling approach to analyze bilateral reviews to predict transaction results. The prediction results will enable the platform to increase the chance that the buyer and seller reach a transaction by presenting buyers with offerings that are more likely to lead to a transaction. Within the framework of the relational topic model, we embed a topic structure with both shared and corpus-specific topics to better handle text corpora generated from different sources. Our model facilitates the extraction of the appropriate topic structure from different document collections that helps enhance the transaction prediction performance. Comprehensive experiments conducted on real-world data sets collected from sharing economy platforms demonstrate that our new model significantly outperforms other alternatives. The robust results obtained from multiple sets of comparisons demonstrate the value of bilateral reviews if they are processed properly. Our approach can be applied to many platforms where bilateral reviews are available.

Suggested Citation

  • Jiawei Chen & Yinghui (Catherine) Yang & Hongyan Liu, 2021. "Mining Bilateral Reviews for Online Transaction Prediction: A Relational Topic Modeling Approach," Information Systems Research, INFORMS, vol. 32(2), pages 541-560, June.
  • Handle: RePEc:inm:orisre:v:32:y:2021:i:2:p:541-560
    DOI: 10.1287/isre.2020.0981
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/isre.2020.0981
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2020.0981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dinesh Puranam & Vishal Narayan & Vrinda Kadiyali, 2017. "The Effect of Calorie Posting Regulation on Consumer Opinion: A Flexible Latent Dirichlet Allocation Model with Informative Priors," Marketing Science, INFORMS, vol. 36(5), pages 726-746, September.
    2. Abhijeet Ghoshal & Syam Menon & Sumit Sarkar, 2015. "Recommendations Using Information from Multiple Association Rules: A Probabilistic Approach," Information Systems Research, INFORMS, vol. 26(3), pages 532-551, September.
    3. Asim Ansari & Yang Li & Jonathan Z. Zhang, 2018. "Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach," Marketing Science, INFORMS, vol. 37(6), pages 987-1008, November.
    4. Lawani, Abdelaziz & Reed, Michael R. & Mark, Tyler & Zheng, Yuqing, 2019. "Reviews and price on online platforms: Evidence from sentiment analysis of Airbnb reviews in Boston," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 22-34.
    5. Ruomeng Cui & Jun Li & Dennis J. Zhang, 2020. "Reducing Discrimination with Reviews in the Sharing Economy: Evidence from Field Experiments on Airbnb," Management Science, INFORMS, vol. 66(3), pages 1071-1094, March.
    6. Gautam Pant & Olivia R. L. Sheng, 2015. "Web Footprints of Firms: Using Online Isomorphism for Competitor Identification," Information Systems Research, INFORMS, vol. 26(1), pages 188-209, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margrét Vilborg Bjarnadóttir & Louiqa Raschid, 2023. "Modeling Financial Products and Their Supply Chains," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 138-160, October.
    2. Wen Zhang & Qiang Wang & Jian Li & Zhenzhong Ma & Gokul Bhandari & Rui Peng, 2023. "What makes deceptive online reviews? A linguistic analysis perspective," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
    2. Bruno Jacobs & Dennis Fok & Bas Donkers, 2021. "Understanding Large-Scale Dynamic Purchase Behavior," Marketing Science, INFORMS, vol. 40(5), pages 844-870, September.
    3. Bae, Joonho & Park, Jinkyoo & Choi, Jeonghye & Bum Soh, Seung, 2023. "A recommending system for mobile games using the dynamic nonparametric model," Journal of Business Research, Elsevier, vol. 167(C).
    4. Yi Yang & Kunpeng Zhang & Yangyang Fan, 2023. "sDTM: A Supervised Bayesian Deep Topic Model for Text Analytics," Information Systems Research, INFORMS, vol. 34(1), pages 137-156, March.
    5. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    6. Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    7. Wei Chen & Karen Xie & Jianwei Liu & Yong Liu, 2019. "How Incumbents Beat Disruptors? Evidence from Hotels’ Responses to Home-sharing Rivals," Working Papers 19-11, NET Institute.
    8. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    9. Ma, Shuang & Cui, Xuebin & Xiao, Xiaohong & Zhao, Xiaonan, 2022. "The impact of photo verification service on sales performance in the peer-to-peer economy: Moderating role of customer uncertainty," Journal of Business Research, Elsevier, vol. 142(C), pages 45-55.
    10. Hyowon Kim & Greg M. Allenby, 2022. "Integrating Textual Information into Models of Choice and Scaled Response Data," Marketing Science, INFORMS, vol. 41(4), pages 815-830, July.
    11. Alex Burnap & John R. Hauser & Artem Timoshenko, 2019. "Product Aesthetic Design: A Machine Learning Augmentation," Papers 1907.07786, arXiv.org, revised Nov 2022.
    12. Oetzel, Sebastian & Graf, Denise, 2023. "Fragen oder Zuhören? Ein Vergleich von Kundenbefragungen und User Generated Content," PraxisWISSEN Marketing: German Journal of Marketing, AfM – Arbeitsgemeinschaft für Marketing, vol. 8(01/2023), pages 91-107.
    13. Gyódi, Kristóf, 2021. "Airbnb and hotels during COVID-19: different strategies to survive," MPRA Paper 109333, University Library of Munich, Germany.
    14. Yuehua Xu & Guangtao Zeng, 2021. "Corporate social performance aspiration and its effects," Asia Pacific Journal of Management, Springer, vol. 38(4), pages 1181-1207, December.
    15. Cloos, Janis & Mohr, Svenja, 2022. "Acceptance of data sharing in smartphone apps from key industries of the digital transformation: A representative population survey for Germany," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    16. Miikka Blomster & Timo Koivumäki, 2022. "Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing," Information Systems and e-Business Management, Springer, vol. 20(1), pages 123-169, March.
    17. Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176R, Cowles Foundation for Research in Economics, Yale University, revised Sep 2020.
    18. Marc R. Dotson & Joachim Büschken & Greg M. Allenby, 2020. "Explaining Preference Heterogeneity with Mixed Membership Modeling," Marketing Science, INFORMS, vol. 39(2), pages 407-426, March.
    19. Ma, Guanhua & Ma, Junhua & Li, Hao & Wang, Yiming & Wang, Zhaohua & Zhang, Bin, 2022. "Customer behavior in purchasing energy-saving products: Big data analytics from online reviews of e-commerce," Energy Policy, Elsevier, vol. 165(C).
    20. Moritz, Raphael & Manger, Christian, 2022. "Somebody that I want to know: The non-monotonic effect of personality information on ethnic and gender discrimination in the market for shared housing," Journal of Housing Economics, Elsevier, vol. 57(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:32:y:2021:i:2:p:541-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.