IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v51y2021i6p463-479.html
   My bibliography  Save this article

Using Machine Learning to Improve Public Reporting on U.S. Government Contracts

Author

Listed:
  • William A. Muir

    (U.S. Air Force Installation Contracting Center, Randolph Air Force Base, Texas 78150)

  • Daniel Reich

    (Naval Postgraduate School, Monterey, California 93943)

Abstract

The U.S. government procures more than $500 billion annually in goods and services on public contracts, which it classifies using a hierarchical product and service taxonomy. Classification serves several purposes, including transparency in the use of taxpayer funding; reporting, tracing, and segmenting government expenditures; budgeting; and forecasting. Government acquisition personnel have historically performed these classifications manually, resulting in a process that is time-consuming and error-prone and offers limited visibility into government purchases. The problem faced is not unique to the public sector and is common across retail, manufacturing, and healthcare, among other settings. Using almost 4 million historical data records on governmental purchases, we fit a series of classifiers and demonstrate (a) superior performance when explicitly modeling the hierarchical structure of information domains through the use of top-down strategies and (b) the effectiveness of character-level convolutional neural networks when textual inputs are terse and contain irregularities such as abnormal character combinations and misspellings, which are common in government contracts. Our machine learning models are embedded in multiple software applications, including a web application that we developed, used by federal government personnel and other contracting professionals.

Suggested Citation

  • William A. Muir & Daniel Reich, 2021. "Using Machine Learning to Improve Public Reporting on U.S. Government Contracts," Interfaces, INFORMS, vol. 51(6), pages 463-479, November.
  • Handle: RePEc:inm:orinte:v:51:y:2021:i:6:p:463-479
    DOI: 10.1287/inte.2021.1098
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2021.1098
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2021.1098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hossein Abdollahnejadbarough & Kalyan S Mupparaju & Sagar Shah & Colin P. Golding & Abelardo C. Leites & Timothy D. Popp & Eric Shroyer & Yanai S. Golany & Anne G. Robinson & Vedat Akgun, 2020. "Verizon Uses Advanced Analytics to Rationalize Its Tail Spend Suppliers," Interfaces, INFORMS, vol. 50(3), pages 197-211, May.
    2. Laleh Rafati & Geert Poels, 2017. "Value-Driven Strategic Sourcing Based on Service-Dominant Logic," Service Science, INFORMS, vol. 9(4), pages 275-287, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    2. Brylowski, Martin & Schröder, Meike & Lodemann, Sebastian & Kersten, Wolfgang, 2021. "Machine learning in supply chain management: A scoping review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 377-406, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    3. Aditya Kamat & Saket Shanker & Akhilesh Barve & Kamalakanta Muduli & Sachin Kumar Mangla & Sunil Luthra, 2022. "Uncovering interrelationships between barriers to unmanned aerial vehicles in humanitarian logistics," Operations Management Research, Springer, vol. 15(3), pages 1134-1160, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:51:y:2021:i:6:p:463-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.