IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v47y2017i3p230-243.html
   My bibliography  Save this article

Less Is More: Harnessing Product Substitution Information to Rationalize SKUs at Intcomex

Author

Listed:
  • Patxi J. Bernales

    (Intcomex Panama, Panama City, Panama)

  • Yongtao Guan

    (School of Business Administration, University of Miami, Coral Gables, Florida 33146)

  • Harihara Prasad Natarajan

    (School of Business Administration, University of Miami, Coral Gables, Florida 33146)

  • Patricia Souza Gimenez

    (Teva Pharmaceutical Industries, Miami, Florida 33137)

  • Mario Xavier Alvarez Tajes

    (Intcomex Uruguay, Montevideo, 11800 Uruguay)

Abstract

Intcomex, a large global distributor of information technology products, was experiencing severe stress in its supply chain from a rapidly expanding set of products in its catalog. The company proactively partnered with an academic team to develop a data-driven approach to address this issue. Rather than adopt potentially suboptimal rules of thumb for product selection (and exclusion), the project team developed a composite method for rationalizing stock-keeping units (SKUs). This approach allows the company to statistically estimate product demand and product substitution using profit-based optimization of the product selection decision. Intuitively, the approach seeks to leverage the company’s ability to substitute products by eliminating low-profit SKUs for which substitutes are available. It accounts for all costs incurred over a product’s life cycle, incorporates other important contextual considerations, and delivers tailored recommendations for each product category and geographical market. We implemented the composite method as two software modules—one for statistical estimation and one for assortment optimization. Using the software tools of the composite method on a product category in the company’s Uruguay operations, we generated an 18 percent increase in profits from rationalizing the company’s product catalog. Despite the streamlined catalog, more than 97.5 percent of the product demand was served; in addition, revenues increased because of the better match between supply and demand.

Suggested Citation

  • Patxi J. Bernales & Yongtao Guan & Harihara Prasad Natarajan & Patricia Souza Gimenez & Mario Xavier Alvarez Tajes, 2017. "Less Is More: Harnessing Product Substitution Information to Rationalize SKUs at Intcomex," Interfaces, INFORMS, vol. 47(3), pages 230-243, June.
  • Handle: RePEc:inm:orinte:v:47:y:2017:i:3:p:230-243
    DOI: 10.1287/inte.2017.0889
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2017.0889
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2017.0889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ravi Anupindi & Maqbool Dada & Sachin Gupta, 1998. "Estimation of Consumer Demand with Stock-Out Based Substitution: An Application to Vending Machine Products," Marketing Science, INFORMS, vol. 17(4), pages 406-423.
    2. Julie Ward & Bin Zhang & Shailendra Jain & Chris Fry & Thomas Olavson & Holger Mishal & Jason Amaral & Dirk Beyer & Ann Brecht & Brian Cargille & Russ Chadinha & Kathy Chou & Gavin DeNyse & Qi Feng & , 2010. "HP Transforms Product Portfolio Management with Operations Research," Interfaces, INFORMS, vol. 40(1), pages 17-32, February.
    3. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    4. Siddharth Mahajan & Garrett van Ryzin, 2001. "Stocking Retail Assortments Under Dynamic Consumer Substitution," Operations Research, INFORMS, vol. 49(3), pages 334-351, June.
    5. Andrés Musalem & Marcelo Olivares & Eric T. Bradlow & Christian Terwiesch & Daniel Corsten, 2010. "Structural Estimation of the Effect of Out-of-Stocks," Management Science, INFORMS, vol. 56(7), pages 1180-1197, July.
    6. Selçuk Karabati & Bariş Tan & Ömer Öztürk, 2009. "A method for estimating stock-out-based substitution rates by using point-of-sale data," IISE Transactions, Taylor & Francis Journals, vol. 41(5), pages 408-420.
    7. Garrett van Ryzin & Siddharth Mahajan, 1999. "On the Relationship Between Inventory Costs and Variety Benefits in Retail Assortments," Management Science, INFORMS, vol. 45(11), pages 1496-1509, November.
    8. A. Gürhan Kök & Marshall L. Fisher, 2007. "Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application," Operations Research, INFORMS, vol. 55(6), pages 1001-1021, December.
    9. Stephen A. Smith & Narendra Agrawal, 2000. "Management of Multi-Item Retail Inventory Systems with Demand Substitution," Operations Research, INFORMS, vol. 48(1), pages 50-64, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Çömez-Dolgan, Nagihan & Fescioglu-Unver, Nilgun & Cephe, Ecem & Şen, Alper, 2021. "Capacitated strategic assortment planning under explicit demand substitution," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1120-1138.
    2. Andrade, Xavier & Guimarães, Luís & Figueira, Gonçalo, 2021. "Product line selection of fast-moving consumer goods," Omega, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joonkyum Lee & Vishal Gaur & Suresh Muthulingam & Gary F. Swisher, 2016. "Stockout-Based Substitution and Inventory Planning in Textbook Retailing," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 104-121, February.
    2. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    3. Pol Boada-Collado & Victor Martínez-de-Albéniz, 2020. "Estimating and Optimizing the Impact of Inventory on Consumer Choices in a Fashion Retail Setting," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 582-597, May.
    4. Ding, Xiaohui & Chen, Caihua & Li, Chongshou & Lim, Andrew, 2021. "Product demand estimation for vending machines using video surveillance data: A group-lasso method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Amr Farahat & Joonkyum Lee, 2018. "The Multiproduct Newsvendor Problem with Customer Choice," Operations Research, INFORMS, vol. 66(1), pages 123-136, January.
    6. Qiu, Jiaqing & Li, Xiangyong & Duan, Yongrui & Chen, Mengxi & Tian, Peng, 2020. "Dynamic assortment in the presence of brand heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    7. Boxiao Chen & Xiuli Chao, 2020. "Dynamic Inventory Control with Stockout Substitution and Demand Learning," Management Science, INFORMS, vol. 66(11), pages 5108-5127, November.
    8. Wan, Mingchao & Huang, Yihui & Zhao, Lei & Deng, Tianhu & Fransoo, Jan C., 2018. "Demand estimation under multi-store multi-product substitution in high density traditional retail," European Journal of Operational Research, Elsevier, vol. 266(1), pages 99-111.
    9. Victor Martínez-de-Albéniz & Sumit Kunnumkal, 2022. "A Model for Integrated Inventory and Assortment Planning," Management Science, INFORMS, vol. 68(7), pages 5049-5067, July.
    10. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    11. Shin, Hojung & Park, Soohoon & Lee, Euncheol & Benton, W.C., 2015. "A classification of the literature on the planning of substitutable products," European Journal of Operational Research, Elsevier, vol. 246(3), pages 686-699.
    12. Garrett van Ryzin & Gustavo Vulcano, 2015. "A Market Discovery Algorithm to Estimate a General Class of Nonparametric Choice Models," Management Science, INFORMS, vol. 61(2), pages 281-300, February.
    13. A. Gürhan Kök & Marshall L. Fisher, 2007. "Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application," Operations Research, INFORMS, vol. 55(6), pages 1001-1021, December.
    14. Marshall Fisher & Ramnath Vaidyanathan, 2014. "A Demand Estimation Procedure for Retail Assortment Optimization with Results from Implementations," Management Science, INFORMS, vol. 60(10), pages 2401-2415, October.
    15. Çömez-Dolgan, Nagihan & Fescioglu-Unver, Nilgun & Cephe, Ecem & Şen, Alper, 2021. "Capacitated strategic assortment planning under explicit demand substitution," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1120-1138.
    16. Gustavo Vulcano & Garrett van Ryzin & Richard Ratliff, 2012. "Estimating Primary Demand for Substitutable Products from Sales Transaction Data," Operations Research, INFORMS, vol. 60(2), pages 313-334, April.
    17. Ali Aouad & Retsef Levi & Danny Segev, 2019. "Approximation Algorithms for Dynamic Assortment Optimization Models," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 487-511, May.
    18. Mehrani, Saharnaz & Sefair, Jorge A., 2022. "Robust assortment optimization under sequential product unavailability," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1027-1043.
    19. Transchel, Sandra & Buisman, Marjolein E. & Haijema, Rene, 2022. "Joint assortment and inventory optimization for vertically differentiated products under consumer-driven substitution," European Journal of Operational Research, Elsevier, vol. 301(1), pages 163-179.
    20. Vineet Goyal & Retsef Levi & Danny Segev, 2016. "Near-Optimal Algorithms for the Assortment Planning Problem Under Dynamic Substitution and Stochastic Demand," Operations Research, INFORMS, vol. 64(1), pages 219-235, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:47:y:2017:i:3:p:230-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.