IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v45y2015i1p58-82.html
   My bibliography  Save this article

Transforming Hospital Emergency Department Workflow and Patient Care

Author

Listed:
  • Eva K. Lee

    (Center for Operations Research in Medicine and HealthCare, Atlanta, Georgia 30332; NSF I/UCRC Center for Health Organization Transformation, Industrial and Systems Engineering, Atlanta, Georgia 30332; and Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Hany Y. Atallah

    (Grady Health System, Atlanta, Georgia; and Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30322)

  • Michael D. Wright

    (Grady Health System, Atlanta, Georgia 30322)

  • Eleanor T. Post

    (Rockdale Medical Center, Conyers, Georgia 30012)

  • Calvin Thomas

    (Health Ivy Tech Community College, Indianapolis, Indiana 46208)

  • Daniel T. Wu

    (Grady Health System, Atlanta, Georgia; and Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30322)

  • Leon L. Haley

    (Grady Health System, Atlanta, Georgia; and Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30322)

Abstract

When we encounter an unexpected critical health problem, a hospital’s emergency department (ED) becomes our vital medical resource. Improving an ED’s timeliness of care, quality of care, and operational efficiency while reducing avoidable readmissions, is fraught with difficulties, which arise from complexity and uncertainty. In this paper, we describe an ED decision support system that couples machine learning, simulation, and optimization to address these improvement goals. The system allows healthcare administrators to globally optimize workflow, taking into account the uncertainties of incoming patient injuries and diseases and their associated care, thereby significantly reducing patient length of stay. This is achieved without changing physical layout, focusing instead on process consolidation, operations tracking, and staffing. First implemented at Grady Memorial Hospital in Atlanta, Georgia, the system helped reduce length of stay at Grady by roughly 33 percent. By repurposing existing resources, the hospital established a clinical decision unit that resulted in a 28 percent reduction in ED readmissions. Insights gained from the implementation also led to an investment in a walk-in center that eliminated more than 32 percent of the nonurgent-care cases from the ED. As a result of these improvements, the hospital enhanced its financial standing and achieved its target goal of an average ED length of stay of close to seven hours. ED and trauma efficiencies improved throughput by over 16 percent and reduced the number of patients who left without being seen by more than 30 percent. The annual revenue realized plus savings generated are approximately $190 million, a large amount relative to the hospital’s $1.5 billion annual economic impact. The underlying model, which we generalized, has been tested and implemented successfully at 10 other EDs and in other hospital units. The system offers significant advantages in that it permits a comprehensive analysis of the entire patient flow from registration to discharge, enables a decision maker to understand the complexities and interdependencies of individual steps in the process sequence, and ultimately allows the users to perform system optimization.

Suggested Citation

  • Eva K. Lee & Hany Y. Atallah & Michael D. Wright & Eleanor T. Post & Calvin Thomas & Daniel T. Wu & Leon L. Haley, 2015. "Transforming Hospital Emergency Department Workflow and Patient Care," Interfaces, INFORMS, vol. 45(1), pages 58-82, February.
  • Handle: RePEc:inm:orinte:v:45:y:2015:i:1:p:58-82
    DOI: 10.1287/inte.2014.0788
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2014.0788
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2014.0788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eva K. Lee & Chien-Hung Chen & Niquelle Brown & Joseph Handy & Alex Desiderio & Ruth Lopez & Brian Davis, 2012. "Designing Guest Flow and Operations Logistics for the Dolphin Tales," Interfaces, INFORMS, vol. 42(5), pages 492-506, October.
    2. J. Brooks & Eva Lee, 2010. "Analysis of the consistency of a mixed integer programming-based multi-category constrained discriminant model," Annals of Operations Research, Springer, vol. 174(1), pages 147-168, February.
    3. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    4. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    5. Westert, Gert P. & Lagoe, Ronald J. & Keskimaki, Ilmo & Leyland, Alastair & Murphy, Mark, 2002. "An international study of hospital readmissions and related utilization in Europe and the USA," Health Policy, Elsevier, vol. 61(3), pages 269-278, September.
    6. Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.
    7. Eva Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Decision support system for mass dispensing of medications for infectious disease outbreaks and bioterrorist attacks," Annals of Operations Research, Springer, vol. 148(1), pages 25-53, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taridzo Chomutare & Miguel Tejedor & Therese Olsen Svenning & Luis Marco-Ruiz & Maryam Tayefi & Karianne Lind & Fred Godtliebsen & Anne Moen & Leila Ismail & Alexandra Makhlysheva & Phuong Dinh Ngo, 2022. "Artificial Intelligence Implementation in Healthcare: A Theory-Based Scoping Review of Barriers and Facilitators," IJERPH, MDPI, vol. 19(23), pages 1-18, December.
    2. Yasar A. Ozcan & Elena Tànfani & Angela Testi, 2017. "Improving the performance of surgery-based clinical pathways: a simulation-optimization approach," Health Care Management Science, Springer, vol. 20(1), pages 1-15, March.
    3. Diego Tlapa & Ignacio Franco-Alucano & Jorge Limon-Romero & Yolanda Baez-Lopez & Guilherme Tortorella, 2022. "Lean, Six Sigma, and Simulation: Evidence from Healthcare Interventions," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    4. Diego Tlapa & Guilherme Tortorella & Flavio Fogliatto & Maneesh Kumar & Alejandro Mac Cawley & Roberto Vassolo & Luis Enberg & Yolanda Baez-Lopez, 2022. "Effects of Lean Interventions Supported by Digital Technologies on Healthcare Services: A Systematic Review," IJERPH, MDPI, vol. 19(15), pages 1-23, July.
    5. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    6. Hui Zhang & Thomas J. Best & Anton Chivu & David O. Meltzer, 2020. "Simulation-based optimization to improve hospital patient assignment to physicians and clinical units," Health Care Management Science, Springer, vol. 23(1), pages 117-141, March.
    7. Eva K. Lee & Helder I. Nakaya & Fan Yuan & Troy D. Querec & Greg Burel & Ferdinand H. Pietz & Bernard A. Benecke & Bali Pulendran, 2016. "Machine Learning for Predicting Vaccine Immunogenicity," Interfaces, INFORMS, vol. 46(5), pages 368-390, October.
    8. Miguel Angel Ortíz-Barrios & Juan-José Alfaro-Saíz, 2020. "Methodological Approaches to Support Process Improvement in Emergency Departments: A Systematic Review," IJERPH, MDPI, vol. 17(8), pages 1-41, April.
    9. David Scheinker & Margaret L. Brandeau, 2020. "Implementing Analytics Projects in a Hospital: Successes, Failures, and Opportunities," Interfaces, INFORMS, vol. 50(3), pages 176-189, May.
    10. A. J. Thomas Schneider & P. Luuk Besselink & Maartje E. Zonderland & Richard J. Boucherie & Wilbert B. van den Hout & Job Kievit & Paul Bilars & A. Jaap Fogteloo & Ton J. Rabelink, 2018. "Allocating Emergency Beds Improves the Emergency Admission Flow," Interfaces, INFORMS, vol. 48(4), pages 384-394, August.
    11. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.
    2. Eva K. Lee & Chien-Hung Chen & Niquelle Brown & Joseph Handy & Alex Desiderio & Ruth Lopez & Brian Davis, 2012. "Designing Guest Flow and Operations Logistics for the Dolphin Tales," Interfaces, INFORMS, vol. 42(5), pages 492-506, October.
    3. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    4. Ubaid Illahi & Mohammad Shafi Mir, 2021. "Maintaining efficient logistics and supply chain management operations during and after coronavirus (COVID-19) pandemic: learning from the past experiences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11157-11178, August.
    5. J. Paul Brooks & Eva K. Lee, 2014. "Solving a Multigroup Mixed-Integer Programming-Based Constrained Discrimination Model," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 567-585, August.
    6. Eva K. Lee & Helder I. Nakaya & Fan Yuan & Troy D. Querec & Greg Burel & Ferdinand H. Pietz & Bernard A. Benecke & Bali Pulendran, 2016. "Machine Learning for Predicting Vaccine Immunogenicity," Interfaces, INFORMS, vol. 46(5), pages 368-390, October.
    7. Desheng Dash Wu & Jia Liu & David L. Olson, 2015. "Simulation Decision System on the Preparation of Emergency Resources Using System Dynamics," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 603-615, November.
    8. Dean, Matthew D. & Nair, Suresh K., 2014. "Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model," European Journal of Operational Research, Elsevier, vol. 238(1), pages 363-373.
    9. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    10. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    11. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    12. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    13. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    14. Andriy Shapoval & Eva K. Lee, 2022. "Managing Guest Flow in Georgia Aquarium After the Dolphin Tales Show Opening," SN Operations Research Forum, Springer, vol. 3(3), pages 1-21, September.
    15. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    16. Aakil M. Caunhye & Xiaofeng Nie, 2018. "A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events," Transportation Science, INFORMS, vol. 52(2), pages 437-453, March.
    17. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    18. Laudicella, Mauro & Li Donni, Paolo & Smith, Peter C., 2013. "Hospital readmission rates: Signal of failure or success?," Journal of Health Economics, Elsevier, vol. 32(5), pages 909-921.
    19. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    20. Huo, Liang’an & Ma, Chenyang, 2017. "The interaction evolution model of mass incidents with delay in a social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 440-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:45:y:2015:i:1:p:58-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.